Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Molecular Modeling Studies of Halogenated Imidazoles against 14α- Demethylase from Candida Albicans for Treating Fungal Infections

Author(s): Nidhi Rani*, Praveen Kumar and Randhir Singh

Volume 20, Issue 2, 2020

Page: [208 - 222] Pages: 15

DOI: 10.2174/1871526519666181130101054

Price: $65

conference banner
Abstract

Background: Imidazole is one of the most explored and marketed azole utilized for the treatment of fungal infections. Lanosterol 14α-demethylase (Cytochrome P450DM) is the active target site for azole antifungals.

Aim and Objective: This study emphasized on evaluation of a series of halogenated imidazole analogues using molecular docking studies for anti-Candidal activity. Furthermore, the model was refined by molecular dynamic simulation.

Methods: Halogenated imidazole analogues (PS1-PS30) were obtained from literature for the study. The imidazole analogues were prepared using Chem sketch and molecular docking was performed using Molergo Virtual Docker program and ADMET study was carried out by using Accelry’s Accord for Excel programme.

Results: The docking study indicated that all the imidazole analogues (PS1-PS30) and standard drugs i.e., Ketoconazole, Miconazole and Clotrimazole possessed interaction with protein residue, heme cofactor and water molecule positioned above Heme cofactor of 14α-demethylase. Further, the ADMET study indicated that most of the halogenated imidazoles possessed good absorption, human intestinal absorption, aqueous solubility and blood brain penetration.

Conclusion: Halogenated imidazole analogues may be used as potential lead molecules as 14α- demethylase inhibitors.

Keywords: Antifungal agents, ADME, 14α-demethylase, imidazole, lipinski rule, molecular docking, molecular dynamic simulation.

Graphical Abstract

[1]
Mamolo, M.G.; Zampieri, D.; Falagiani, V.; Vio, L.; Fermeglia, M.; Ferrone, M.; Pricl, S.; Banfi, E.; Scialino, G. Antifungal and antimycobacterial activity of new N1-[1-aryl-2-(1H-imidazol-1-yl and 1H-1,2,4-triazol-1-yl)-ethylidene]-pyridine-2-carboxamidra-zone derivatives: A combined experimental and computational approach. ARKIVOC, 2004, v, 231-250.
[2]
Menozzi, G.; Merello, L.; Fossa, P.; Schenone, S.; Ranise, A.; Mosti, L.; Bondavalli, F.; Loddo, R.; Murgioni, C.; Mascia, V.; La Colla, P.; Tamburini, E. Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles. Bioorg. Med. Chem., 2004, 12(20), 5465-5483.
[http://dx.doi.org/10.1016/j.bmc.2004.07.029] [PMID: 15388173]
[3]
Rossello, A.; Bertini, S.; Lapucci, A.; Macchia, M.; Martinelli, A.; Rapposelli, S.; Herreros, E.; Macchia, B. Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J. Med. Chem., 2002, 45(22), 4903-4912.
[http://dx.doi.org/10.1021/jm020980t] [PMID: 12383016]
[4]
Khan, Z.K.; Jain, P. Antifungal agents and immunomodulators in systemic mycoses. Indian J. Chest Dis. Allied Sci., 2000, 42(4), 345-355.
[PMID: 15597684]
[5]
Croxtall, J.D.; Plosker, G.L. Sertaconazole: a review of its use in the management of superficial mycoses in dermatology and gynaecology. Drugs, 2009, 69(3), 339-359.
[http://dx.doi.org/10.2165/00003495-200969030-00009] [PMID: 19275277]
[6]
Sud, I.J.; Feingold, D.S. Heterogeneity of action of mechanisms among antimycotic imidazoles. Antimicrob. Agents Chemother., 1981, 20(1), 71-74.
[http://dx.doi.org/10.1128/AAC.20.1.71] [PMID: 6269485]
[7]
Rani, N.; Sharma, A.; Gupta, G.K.; Singh, R. Imidazoles as potential antifungal agents: a review. Mini Rev. Med. Chem., 2013, 13(11), 1626-1655.
[http://dx.doi.org/10.2174/13895575113139990069] [PMID: 23815583]
[8]
Sheng, C.; Zhang, W.; Ji, H.; Zhang, M.; Song, Y.; Xu, H.; Zhu, J.; Miao, Z.; Jiang, Q.; Yao, J.; Zhou, Y.; Zhu, J.; Lü, J. Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking. J. Med. Chem., 2006, 49(8), 2512-2525.
[http://dx.doi.org/10.1021/jm051211n] [PMID: 16610794]
[9]
Tafi, A.; Anastassopoulou, J.; Theophanides, T.; Botta, M.; Corelli, F.; Massa, S.; Artico, M.; Costi, R.; Di Santo, R.; Ragno, R. Molecular modeling of azole antifungal agents active against Candida albicans. 1. A comparative molecular field analysis study. J. Med. Chem., 1996, 39(6), 1227-1235.
[http://dx.doi.org/10.1021/jm950385+] [PMID: 8632429]
[10]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[11]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[12]
Egan, W.J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev., 2002, 54(3), 273-289.
[http://dx.doi.org/10.1016/S0169-409X(02)00004-2] [PMID: 11922948]
[13]
Pitchai, D.; Manikkam, R. Hypoglycemic and insulin mimetic impact of catechin isolated from Cassia fistula: A substantiate in silico approach through docking analysis. Med. Chem. Res., 2012, 21, 2238-2250.
[http://dx.doi.org/10.1007/s00044-011-9722-1]
[14]
Puratchikody, A.; Gopalakrishnan, S.; Nallu, M. Synthesis and pharmacological evaluation of some potent 2-(4- substitutedphenyl)-4,5-diphenyl-1H-imidazoles. Indian J. Pharm. Sci., 2005, 67, 725-731.
[15]
Parveen, A.; Ahmed, R.; Shaikh, K.A.; Deshmukh, A.P.; Pawar, R.P. Efficient synthesis of 2,4,5-triaryl substituted imidazoles under solvent free conditions at room temperature. ARKIVOC, 2007, xvi, 12-18.
[16]
Yu, C.; Lei, M.; Su, W.; Xie, Y. Europium triflate-catalyzed one-pot synthesis of 2,4,5-trisubstituted-1H-imidazoles via a three-component condensation. Synth. Commun., 2007, 37, 3301-3309.
[http://dx.doi.org/10.1080/00397910701483589]
[17]
Johnson, N.W.; Semones, M.; Adams, J.L.; Hansbury, M.; Winkler, J. Optimization of triarylimidazoles for Tie2: influence of conformation on potency. Bioorg. Med. Chem. Lett., 2007, 17(20), 5514-5517.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.052] [PMID: 17826092]
[18]
Zhu, C.; Hansen, A.R.; Bateman, T.; Chen, Z.; Holt, T.G.; Hubert, J.A.; Karanam, B.V.; Lee, S.J.; Pan, J.; Qian, S.; Reddy, V.B.G.; Reitman, M.L.; Strack, A.M.; Tong, V.; Weingarth, D.T.; Wolff, M.S.; MacNeil, D.J.; Weber, A.E.; Duffy, J.L.; Edmondson, S.D. Discovery of imidazole carboxamides as potent and selective CCK1R agonists. Bioorg. Med. Chem. Lett., 2008, 18(15), 4393-4396.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.057] [PMID: 18614364]
[19]
Khosropour, A.R. Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by [Hmim]HSO4 as a powerful bronsted acidic ionic liquid. Can. J. Chem., 2008, 86, 264-269.
[http://dx.doi.org/10.1139/v08-009]
[20]
Murthy, S.N.; Madhav, B.; Nageswar, Y.V.D. DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazolesvia multi-component condensation strategy. Tetrahedron Lett., 2010, 51, 5252-5257.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.128]
[21]
Sivakumar, K.; Kathirvel, A.; Lalitha, A. Simple and efficient method for the synthesis of highly substituted imidazoles using zeolite-supported rea-gents. Tetrahedron Lett., 2010, 51, 3018-3021.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.013]
[22]
Zhou, J.; Gong, G.; Sun, X.; Zhu, Y. Facile method for one-step synthesis of 2,4,5-triarylimidazoles under catalyst-free, solvent-free, and micro-wave-irradiation conditions. Synth. Commun., 2010, 40, 1134-1141.
[http://dx.doi.org/10.1080/00397910903043025]
[23]
Kong, L.; Lv, X.; Lin, Q.; Liu, X.; Zhou, Y.; Jia, Y. Efficient synthesis of imidazoles from aldehydes and 1,2-diketones under superheating condi-tions by using a continuous flow microreactor system under pressure. Org. Process Res. Dev., 2010, 14, 902-904.
[http://dx.doi.org/10.1021/op100058h]
[24]
Safari, J.; Khalili, S.D.; Banitaba, S.H.; Dehghani, H. Zinc (II) [tetra(4-methylphenyl)] porphyrin: A novel and reusable catalyst for efficient synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation. J. Korean Chem. Soc, 2011, 55, 787-793.
[http://dx.doi.org/10.5012/jkcs.2011.55.5.787]
[25]
Zarghi, A.; Arfaei, S.; Ghodsi, R. Design and synthesis of new 2,4,5-triarylimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors. Med. Chem. Res., 2012, 21, 1803-1810.
[http://dx.doi.org/10.1007/s00044-011-9710-5]
[26]
Gupta, G.K.; Rani, N.; Kumar, V. Microwave assisted synthesis of imidazoles-A review. Mini-review Org Chem, 2012, 9, 270-284.
[http://dx.doi.org/10.2174/1570193X11209030270]
[27]
Roy, H.N.; Rahman, M.M.; Pramanick, P.K. Rapid access of some trisubstitutedimidazoles from benzyl condensed with aldehydes and ammonium acetate catalyzed by L-cysteine. Indian J. Chem., 2013, 52B, 153-159.
[28]
Mirjalili, B.F.; Bamoniri, A.; Mohagheh, N. One-pot synthesis of 2,4,5-trisubstituted-1H-imidazoles promoted by trichloromelamine. Curr.Chem.Lett., 2013, 2, 35-42.
[http://dx.doi.org/10.5267/j.ccl.2012.12.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy