Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Targeting Inflammation with Conjugated Cinnamic Amides, Ethers and Esters

Author(s): Ioannis Fotopoulos, Eleni Pontiki and Dimitra Hadjipavlou Litina*

Volume 17, Issue 1, 2020

Page: [3 - 11] Pages: 9

DOI: 10.2174/1570180816666181129125511

Price: $65

Abstract

Background: Cinnamic acid is a key intermediate in shikimate and phenylpropanoid pathways. It is found both in free form, and especially in the form of esters in various essential oils, resins and balsams which are very important intermediates in the biosynthetic pathway of several natural products. The cinnamic derivatives play a vital role in the formation of commercially important intermediate molecules which are necessary for the production of different bioactive compounds and drugs. Different substitutions on basic moiety lead to various biological activities. Furthermore, combination of appropriate pharmacophore groups with cinnamic acid derivatives were developed to give hybrids in order to find out promising drug candidates as inhibitors of multiple biological targets associated with inflammation. We found interesting to continue our efforts to design and synthesise three series of novel cinnamic acid-based hybrids: a) nitrooxy esters of cinnamic acid, b) ethers and c) amides of cinnamic acids with arginine, as pleiotropic candidates against multiple targets of inflammation.

Methods: The synthesis of cinnamic was established by a Knoevenagel-Doebner condensation of the suitable aldehyde either with malonic acid in the presence of pyridine and piperidine, or with phenylacetic acid in the precence of triethylamine in acetic anhydride. The synthesis of the corresponding esters was conducted in two steps. The ethers were synthesized in low yields, with 1,2 – dibromoethane in dry acetone, in the presence of K2CO3, to give oily products. The corresponding cinnamic amides were synthesised in a single step. The synthesised hybrids were tested as lipoxygenase (LOX) and cyclooxygenase (COX) inhibitors in vitro. In silico docking was applied to all the novel derivatives. Several molecular properties of the hybrids were calculated in order to evaluate their drug likeness.

Results: A number of esters, ethers and amides of selected cinnamic acids, either phenyl substituted or not, has been synthesised and subjected to modelling studies. The compounds were studied in vitro/in vivo for their inhibitory activities on cox and lox, and as antioxidants. Log P values of all the title compounds except of 3a (5.38) were found to be less than 5 and are in agreement to Lipinski’s rule of five, suggesting satisfactory permeability across cell membrane. The molecular modelling study seems to be in accordance with the experimental results for LOX and COX-2. The result of antioxidant activity for amide 3b supports the anti-lox activity. Compound 5d presents the higher in vivo anti-inflammatory.

Conclusion: According to the experimental findings compounds 3b and 5d can be used as lead compounds for the design of new molecules to target inflammation.

Keywords: Cinnamic esters, cinnamic amides, cyclooxygenase, lipoxygenase, drug-likeness, modelling.

Graphical Abstract

[1]
Rastogi, N.; Goh, K.S.; Wright, E.L.; Barrow, W.W. Potential drug targets for Mycobacterium avium defined by radiometric drug-inhibitor combination techniques. Antimicrob. Agents Chemother., 1994, 38(10), 2287-2295.
[http://dx.doi.org/10.1128/AAC.38.10.2287] [PMID: 7840559]
[2]
Adisakwattana, S.; Moonsan, P.; Yibchok-Anun, S. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J. Agric. Food Chem., 2008, 56(17), 7838-7844.
[http://dx.doi.org/10.1021/jf801208t] [PMID: 18651742]
[3]
Chung, H.S.; Shin, J.C. Characterization of antioxidant alkaloids and phenolic acids from anthocyanin-pigmented rice (Oryza sativa cv. Heugjinjubyeo). Food Chem., 2007, 104(4), 1670-1677.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.020]
[4]
Naz, S.; Ahmad, S.; Ajaz Rasool, S.; Asad Sayeed, S.; Siddiqi, R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol. Res., 2006, 161(1), 43-48.
[http://dx.doi.org/10.1016/j.micres.2005.05.001] [PMID: 16338589]
[5]
Pérez-Alvarez, V.; Bobadilla, R.A.; Muriel, P. Structure-hepatoprotective activity relationship of 3,4-dihydroxycinnamic acid (caffeic acid) derivatives. J. Appl. Toxicol., 2001, 21(6), 527-531.
[http://dx.doi.org/10.1002/jat.806] [PMID: 11746202]
[6]
Gunia-Krzyżak, A.; Pańczyk, K.; Waszkielewicz, A.M.; Marona, H. Cinnamamide derivatives for central and peripheral nervous system disorders-A review of structure-activity relationships. ChemMedChem, 2015, 10(8), 1302-1325.
[http://dx.doi.org/10.1002/cmdc.201500153] [PMID: 26083325]
[7]
Fajemiroye, J.O.; Prabhakar, P.R.; Cunha, L.C.; Costa, E.A.; Zjawiony, J.K. 22-azidosalvinorin A exhibits antidepressant-like effect in mice. Eur. J. Pharmacol., 2017, 800, 96-106.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.031] [PMID: 28219707]
[8]
Sharma, P. Cinnamic acid derivatives: A new chapter of various pharmacological activities. J. Chem. Pharm. Res., 2011, 3(2), 403-423.
[9]
Gayam, V.; Ravi, S. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. Eur. J. Med. Chem., 2017, 135, 382-391.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.063] [PMID: 28460312]
[10]
Gravina, H.D.; Tafuri, N.F.; Silva Júnior, A.; Fietto, J.L.R.; Oliveira, T.T.; Diaz, M.A.N.; Almeida, M.R. In vitro assessment of the antiviral potential of trans-cinnamic acid, quercetin and morin against equid herpesvirus 1. Res. Vet. Sci., 2011, 91(3), e158-e162.
[http://dx.doi.org/10.1016/j.rvsc.2010.11.010] [PMID: 21159355]
[11]
Yoon, B.H.; Jung, J.W.; Lee, J-J.; Cho, Y-W.; Jang, C-G.; Jin, C.; Oh, T.H.; Ryu, J.H. Anxiolytic-like effects of sinapic acid in mice. Life Sci., 2007, 81(3), 234-240.
[http://dx.doi.org/10.1016/j.lfs.2007.05.007] [PMID: 17570441]
[12]
Hedvati, L.; Nudelman, A.; Falb, E.; Kraiz, B.; Zhuk, R.; Sprecher, M. Cinnamic acid derived oxazolinium ions as novel cytotoxic agents. Eur. J. Med. Chem., 2002, 37(7), 607-616.
[http://dx.doi.org/10.1016/S0223-5234(02)01375-2] [PMID: 12126779]
[13]
Natella, F.; Nardini, M.; Di Felice, M.; Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: Structure-activity relation. J. Agric. Food Chem., 1999, 47(4), 1453-1459.
[http://dx.doi.org/10.1021/jf980737w] [PMID: 10563998]
[14]
Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem., 2012, 12(8), 749-767.
[http://dx.doi.org/10.2174/138955712801264792] [PMID: 22512578]
[15]
Bernini, R.; Mincione, E.; Barontini, M.; Provenzano, G.; Setti, L. Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron, 2007, 63(39), 9663-9667.
[http://dx.doi.org/10.1016/j.tet.2007.07.035]
[16]
Pontiki, E.; Hadjipavlou-Litina, D. Antioxidant and anti-inflammatory activity of aryl-acetic and hydroxamic acids as novel lipoxygenase inhibitors. Med. Chem., 2006, 2(3), 251-264.
[http://dx.doi.org/10.2174/157340606776930763] [PMID: 16948471]
[17]
Pontiki, E.; Hadjipavlou-Litina, D. Synthesis and pharmacochemical evaluation of novel aryl-acetic acid inhibitors of lipoxygenase, antioxidants, and anti-inflammatory agents. Bioorg. Med. Chem., 2007, 15(17), 5819-5827.
[http://dx.doi.org/10.1016/j.bmc.2007.06.001] [PMID: 17604175]
[18]
Pontiki, E.; Hadjipavlou-Litina, D.; Geromichalos, G.; Papageorgiou, A. Anticancer activity and quantitative-structure activity relationship (QSAR) studies of a series of antioxidant/anti-inflammatory aryl-acetic and hydroxamic acids. Chem. Biol. Drug Des., 2009, 74(3), 266-275.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00864.x] [PMID: 19703028]
[19]
Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolotti, O.; Carotti, A. Design, synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities. Eur. J. Med. Chem., 2011, 46(1), 191-200.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.035] [PMID: 21106277]
[20]
Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Geromichalos, G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: Design, synthesis and modeling studies. Molecules, 2014, 19(7), 9655-9674.
[http://dx.doi.org/10.3390/molecules19079655] [PMID: 25004073]
[21]
Wu, G.; Jaeger, L.A.; Bazer, F.W.; Rhoads, J.M. Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. J. Nutr. Biochem., 2004, 15(8), 442-451.
[http://dx.doi.org/10.1016/j.jnutbio.2003.11.010] [PMID: 15302078]
[22]
de Nigris, F.; Lerman, L.O.; Ignarro, S.W.; Sica, G.; Lerman, A.; Palinski, W.; Ignarro, L.J.; Napoli, C. Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1420-1425.
[http://dx.doi.org/10.1073/pnas.0237367100] [PMID: 12525696]
[23]
Wallner, S.; Hermetter, A.; Mayer, B.; Wascher, T.C. The alpha-amino group of L-arginine mediates its antioxidant effect. Eur. J. Clin. Invest., 2001, 31(2), 98-102.
[http://dx.doi.org/10.1046/j.1365-2362.2001.00771.x] [PMID: 11168445]
[24]
Peperidou, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Voulgari, E.; Avgoustakis, K. Multifunctional cinnamic acid derivatives. Molecules, 2017, 22(8)E1247
[http://dx.doi.org/10.3390/molecules22081247] [PMID: 28757554]
[25]
Peperidou, A.; Kapoukranidou, D.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Multitarget molecular hybrids of cinnamic acids. Molecules, 2014, 19(12), 20197-20226.
[http://dx.doi.org/10.3390/molecules191220197] [PMID: 25474291]
[26]
Liégeois, C.; Lermusieau, G.; Collin, S. Measuring antioxidant efficiency of wort, malt, and hops against the 2,2′-azobis(2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J. Agric. Food Chem., 2000, 48(4), 1129-1134.
[http://dx.doi.org/10.1021/jf9911242] [PMID: 10775361]
[27]
Kulmacz, R.J.; Lands, W.E.M. Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins, 1983, 25(4), 531-540.
[http://dx.doi.org/10.1016/0090-6980(83)90025-4] [PMID: 6410459]
[28]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[29]
Chi, S-C.; Jun, H.W. Anti-inflammatory activity of ketoprofen gel on carrageenan-induced paw edema in rats. J. Pharm. Sci., 1990, 79(11), 974-977.
[http://dx.doi.org/10.1002/jps.2600791106] [PMID: 2292773]
[30]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[31]
Detterbeck, R.; Hesse, M. Synthesis and structure elucidation of open-chained putrescine-bisamides from Aglaia species. Tetrahedron, 2002, 58(34), 6887-6893.
[http://dx.doi.org/10.1016/S0040-4020(02)00751-2]
[32]
Prakash, S.M.D.; Samanta, S.; Sinha, R.K. Design, synthesis and antidiabetic, cardiomyopathy studies of cinnamic acid-amino acid hybrid analogs. Med. Chem., 2014, 4(2), 345-350.
[33]
Sahakitpichan, P.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. L-(-)-(N-trans-cinnamoyl)-arginine, an acylamino acid from Glinus oppositifolius (L.) Aug. DC. Molecules, 2010, 15(9), 6186-6192.
[http://dx.doi.org/10.3390/molecules15096186] [PMID: 20877215]
[34]
MolInspiration Cheminformatics.www.molinspiration.com
[35]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[36]
Fiser, A. Šali, A. Modeller: Generation and refinement of homology-based protein structure models. Methods Enzymol., 2003, 374, 461-491.
[37]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[38]
Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17(5‐6), 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P]
[39]
Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - AnteChamber python parser interface. BMC Res. Notes, 2012, 5(1), 367.
[http://dx.doi.org/10.1186/1756-0500-5-367] [PMID: 22824207]
[40]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[41]
Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958.
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[42]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[43]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[44]
Pontiki, E.; Hadjipavlou-Litina, D. Lipoxygenase inhibitors: A comparative QSAR study review and evaluation of new QSARs. Med. Res. Rev., 2008, 28(1), 39-117.
[http://dx.doi.org/10.1002/med.20099] [PMID: 17191217]
[45]
Taraporewala, I.B.; Kauffman, J.M. Synthesis and structure-activity relationships of anti-inflammatory 9,10-dihydro-9-oxo-2-acridine-alkanoic acids and 4-(2-carboxyphenyl)aminobenzenealkanoic acids. J. Pharm. Sci., 1990, 79(2), 173-178.
[http://dx.doi.org/10.1002/jps.2600790219] [PMID: 2109057]
[46]
Müller, K. 5-Lipoxygenase and 12-lipoxygenase: Attractive targets for the development of novel antipsoriatic drugs. Arch. Pharm. (Weinheim), 1994, 327(1), 3-19.
[http://dx.doi.org/10.1002/ardp.19943270103] [PMID: 8117187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy