Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Development of Robust Partial Least Squares Regression Model for Spectroscopic Determination of Diclofenac Sodium in Environmental Samples

Author(s): Biswanath Mahanty* and Angel P. John

Volume 16, Issue 3, 2020

Page: [241 - 249] Pages: 9

DOI: 10.2174/1573411015666181128143727

Price: $65

Abstract

Background: Diclofenac (DCF) is an important widely used non-steroidal antiinflammatory drug. Disposal of expired formulation, excretion from administered dose, the poor performance of sewage treatment process, contributes to its frequent detection in environment. Analysis of DCF in environmental sample requires time consuming pretreatment, extraction steps. Though, UV absorption analysis of DCF is simple but spectral interference of soil organic matter is a problem. The aim of this paper is to establish appropriate partial least square chemometric model for DCF quantitation through variable selection, and validation of analytical method through multivariate figure of merit analysis.

Methods: Spectral data of DCF spiked soil solution is recorded and variants of partial least squares (PLS) regression viz., backward-interval PLS (biPLS), synergy-interval PLS (siPLS) and genetic algorithm (GA) based PLS models (GA-PLS) are developed from autoscaled and 2nd order differential spectrum. Prediction fidelity of the selected models was evaluated from a blind-folded semi-synthetic spectral data. The method was validated through figures of merit estimates, such as selectivity, analytical sensitivity, limits of detection and quantitation.

Results: The siPLS model developed offered the minimum root mean square error of crossvalidation (RMSECV) of 0.1896 mg/l and 0.1910 mg/l for autoscaled data (9 variables) and derivative spectra (12 variables), respectively. Refinement of the derivative spectrum with GA offered a simplified model (RMSECV:0.1712, 10 variable).

Conclusion: The GA based variable selection for PLS regression analysis offers robust analytical tool for DCF in environmental samples. Further research is warranted to model variable interference in spectral data unknown to analyst in priori.

Keywords: Derivative spectra, diclofenac, environmental analysis, genetic algorithm, PLS regression, prediction accuracy.

Graphical Abstract

[1]
Zhang, Y.; Geissen, S-U.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 2008, 73(8), 1151-1161.
[http://dx.doi.org/10.1016/j.chemosphere.2008.07.086] [PMID: 18793791]
[2]
Stülten, D.; Zühlke, S.; Lamshöft, M.; Spiteller, M. Occurrence of diclofenac and selected metabolites in sewage effluents. Sci. Total Environ., 2008, 405(1-3), 310-316.
[http://dx.doi.org/10.1016/j.scitotenv.2008.05.036] [PMID: 18640705]
[3]
Monteiro, S.C.; Boxall, A.B.A. Occurrence and Fate of Human Pharmaceuticals in the Environment; Springer: New York, 2010, pp. 53-154.
[http://dx.doi.org/10.1007/978-1-4419-1157-5_2]
[4]
Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity - A review. Environ. Int., 2016, 96, 127-138.
[http://dx.doi.org/10.1016/j.envint.2016.09.014] [PMID: 27649472]
[5]
Taggart, M.A.; Cuthbert, R.; Das, D.; Sashikumar, C.; Pain, D.J.; Green, R.E.; Feltrer, Y.; Shultz, S.; Cunningham, A.A.; Meharg, A.A. Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines. Environ. Pollut., 2007, 147(1), 60-65.
[http://dx.doi.org/10.1016/j.envpol.2006.08.017] [PMID: 17069941]
[6]
Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol., 2004, 68(2), 141-150.
[http://dx.doi.org/10.1016/j.aquatox.2004.03.014] [PMID: 15145224]
[7]
Azzouz, A.; Ballesteros, E. Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography-mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Sci. Total Environ., 2012, 419, 208-215.
[http://dx.doi.org/10.1016/j.scitotenv.2011.12.058] [PMID: 22285085]
[8]
Chen, G.; den Braver, M.W.; van Gestel, C.A.M.; van Straalen, N.M.; Roelofs, D. Ecotoxicogenomic assessment of diclofenac toxicity in soil. Environ. Pollut., 2015, 199, 253-260.
[http://dx.doi.org/10.1016/j.envpol.2015.01.032] [PMID: 25697405]
[9]
Matin, A.A.; Farajzadeh, M.A.; Jouyban, A. A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations. Farmaco, 2005, 60(10), 855-858.
[http://dx.doi.org/10.1016/j.farmac.2005.05.011] [PMID: 16125178]
[10]
Sena, M.M.; Chaudhry, Z.F.; Collins, C.H.; Poppi, R.J. Direct determination of diclofenac in pharmaceutical formulations containing B vitamins by using UV spectrophotometry and partial least squares regression. J. Pharm. Biomed. Anal., 2004, 36(4), 743-749.
[http://dx.doi.org/10.1016/j.jpba.2004.08.001] [PMID: 15533666]
[11]
Loiselle, S.a.; Bracchini, L.; Dattilo, A.M.; Ricci, M.; Tognazzi, A.; Cézar, A.; Rossi, C. The optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol. Oceanogr., 2009, 54(2), 590-597.
[http://dx.doi.org/10.4319/lo.2009.54.2.0590]
[12]
Wentzell, P.D.; Montoto, L.V. Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom. Intell. Lab. Syst., 2003, 65(2), 257-279.
[http://dx.doi.org/10.1016/S0169-7439(02)00138-7]
[13]
Lee, H.W.; Bawn, A.; Yoon, S. Reproducibility, complementary measure of predictability for robustness improvement of multivariate calibration models via variable selections. Anal. Chim. Acta, 2012, 757, 11-18.
[http://dx.doi.org/10.1016/j.aca.2012.10.025] [PMID: 23206391]
[14]
Wu, Z.; Ma, Q.; Lin, Z.; Peng, Y.; Ai, L.; Shi, X.; Qiao, Y. A novel model selection strategy using total error concept. Talanta, 2013, 107, 248-254.
[http://dx.doi.org/10.1016/j.talanta.2012.12.057] [PMID: 23598219]
[15]
Jiao, L.; Bing, S.; Zhang, X.; Wang, Y.; Li, H. Application of fluorescence spectroscopy combined with interval partial least squares to the determination of enantiomeric composition of tryptophan. Chemom. Intell. Lab. Syst., 2016, 156, 181-187.
[http://dx.doi.org/10.1016/j.chemolab.2016.06.005]
[16]
da Silva, F.E.B.; Flores, É.M.M.; Parisotto, G.; Müller, E.I.; Ferrão, M.F.; da Silva, F.E.B.; Flores, É.M.M.; Parisotto, G.; Müller, E.I.; Ferrão, M.F. Green method by diffuse reflectance infrared spectroscopy and spectral region selection for the quantification of sulphamethoxazole and trimethoprim in pharmaceutical formulations. An. Acad. Bras. Cienc., 2016, 88(1), 1-15.
[http://dx.doi.org/10.1590/0001-3765201620150057] [PMID: 26959321]
[17]
Nekoei, M. Genetic algorithm based wavelengths selection coupled with partial least squares for simultaneous spectrophotometric determination of phosphate and silicate in detergent products. Curr. Anal. Chem., 2018, 14(2), 151-158.
[http://dx.doi.org/10.2174/1573411013666170703162902]
[18]
Shariati-Rad, M.; Hasani, M. Selection of individual variables versus intervals of variables in PLSR. J. Chemometr., 2010, 24(2), 45-56.
[http://dx.doi.org/10.1002/cem.1266]
[19]
Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11(1), 137-148.
[http://dx.doi.org/10.1080/00401706.1969.10490666]
[20]
Luo, J.; Ying, K.; He, P.; Bai, J. Properties of Savitzky-Golay digital differentiators. Digit. Signal Process., 2005, 15(2), 122-136.
[http://dx.doi.org/10.1016/j.dsp.2004.09.008]
[21]
Solhjoo, A.; Khajehsharifi, H. Multivariate calibration applied to the simultaneous spectrophotometric determination of ascorbic acid, tyrosine and epinephrine in pharmaceutical formulation and biological fluids. Curr. Anal. Chem., 2016, 12(6), 580-593.
[http://dx.doi.org/10.2174/1573411012999160401124820]
[22]
Gómez-Carracedo, M.P.P.; Andrade, J.M.M.; Rutledge, D.N.N.; Faber, N.M.M. Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples. Anal. Chim. Acta, 2007, 585(2), 253-265.
[http://dx.doi.org/10.1016/j.aca.2006.12.036] [PMID: 17386673]
[23]
Thomas, E.V. Non-parametric statistical methods for multivariate calibration model selection and comparison. J. Chemometr., 2003, 17(12), 653-659.
[http://dx.doi.org/10.1002/cem.833]
[24]
Hall, P.; Horowitz, J. A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Stat., 2013, 41(4), 1892-1921.
[http://dx.doi.org/10.1214/13-AOS1137]
[25]
Mahanty, B.; Yoon, S-U.; Kim, C-G. Spectroscopic quantitation of tetrazolium formazan in nano-toxicity assay with interval-based partial least squares regression and genetic algorithm. Chemom. Intell. Lab. Syst., 2016, 154, 16-22.
[http://dx.doi.org/10.1016/j.chemolab.2016.03.012]
[26]
Mahanty, B.; Kim, S.; Kim, C.G. Biokinetic modeling of ureolysis in sporosarcina pasteurii and its integration into a numerical chemodynamic biocalcification Model. Chem. Geol., 2014, 383, 13-25.
[http://dx.doi.org/10.1016/j.chemgeo.2014.05.034]
[27]
Faber, N.K. Efficient computation of net analyte signal vector in inverse multivariate calibration models. Anal. Chem., 1998, 70(23), 5108-5110.
[http://dx.doi.org/10.1021/ac980319q] [PMID: 21644689]
[28]
Silva, M.A.M.; Ferreira, M.H.; Braga, J.W.B.; Sena, M.M. Development and analytical validation of a multivariate calibration method for determination of amoxicillin in suspension formulations by near infrared spectroscopy. Talanta, 2012, 89, 342-351.
[http://dx.doi.org/10.1016/j.talanta.2011.12.039] [PMID: 22284501]
[29]
Braga, J.W.B.; Poppi, R.J. Figures of merit for the determination of the polymorphic purity of carbamazepine by infrared spectroscopy and multivariate calibration. J. Pharm. Sci., 2004, 93(8), 2124-2134.
[http://dx.doi.org/10.1002/jps.20109] [PMID: 15236459]
[30]
Sun, J.; Ma, B.; Dong, J.; Zhu, R.; Zhang, R.; Jiang, W. Detection of internal qualities of hami melons using hyperspectral imaging technology based on variable selection algorithms. J. Food Process Eng., 2016.
[31]
Chen, Q.; Jiang, P.; Zhao, J. Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(1), 50-55.
[http://dx.doi.org/10.1016/j.saa.2010.02.045] [PMID: 20338806]
[32]
Short, S.M.; Cogdill, R.P.; Anderson, C.A. Determination of figures of merit for near-infrared and Raman spectrometry by net analyte signal analysis for a 4-component solid dosage system. AAPS PharmSciTech, 2007, 8(4), E96
[http://dx.doi.org/10.1208/pt0804096] [PMID: 18181556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy