[1]
Maleknia, S.D.; Goldsmith, S.; Vorobiev, S.; Almo, S.C.; Chance, M.R.; Downard, K.M. Proceedings 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL1998, p. 171.
[2]
Maleknia, S.D.; Qin, H.; Chance, M.R. Proceedings of the 46th American Society for Mass Spectrometry Conference, Orlando, FL1998, p. 170.
[3]
Maleknia, S.D.; Chance, M.R.; Downard, K.M. Electrospray assisted modification of proteins. A radical probe of protein structure. Rapid Commun. Mass Spectrom., 1999, 13, 2352-2358.
[4]
Maleknia, S.D.; Downard, K.M. Radical approaches to probe protein structures and interactions by mass spectrometry. Mass Spectrom. Rev., 2001, 20, 388-401.
[5]
Maleknia, S.D.; Chance, M.R.; Downard, K.M. Electrospray generated oxygenated radicals to probe protein structure. Adv. Mass Spectrom., 2001, 15, 543-544.
[6]
Gupta, S.; Celestre, R.; Petzold, C.J.; Chance, M.R.; Ralston, C. Development of a microsecond X-ray protein footprinting facility at the advanced light source. J. Synchrotron Radiat., 2014, 21, 690-699.
[7]
Maleknia, S.D.; Fisher, K. Proceedings 62th ASMS Conference on Mass Spectrometry and Allied Topics, Baltimore, MD2014, p. 358.
[8]
Maleknia, S.D.; Downard, K.M. Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications. Chem. Soc. Rev., 2014, 43, 3244-3258.
[9]
Maleknia, S.D.; Downard, K.M. Genesis & Application of Radical Probe Mass Spectrometry (RP-MS) to Study Protein Interactions.Mass Spectrometry of Protein Interactions; Downard, K.M., Ed.; John Wiley & Sons: New Jersey, USA, 2007, pp. 109-133.
[10]
Vahidi, S.; Konerman, L. Probing the time scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical reactions extend over tens of milliseconds. J. Am. Soc. Mass Spectrom., 2016, 27, 1156-1164.
[11]
Gerega, S.K.; Downard, K.M. PROXIMO- a new docking algorithm to model protein complexes using data from Radical Probe Mass Spectrometry (RP-MS). Bioinformatics, 2006, 22, 1702-1709.
[12]
Shum, W.K.; Maleknia, S.D.; Downard, K.M. Onset of oxidative damage in α-crystallin by radical probe mass spectrometry. Anal. Biochem., 2005, 344, 247-256.
[13]
Maleknia, S.D.; Reixach, N.; Buxbaum, J.N. Oxidation inhibits amyloid fibril formation of transthyretin. FEBS J., 2006, 273, 5400-5406.
[14]
Downard, K.M.; Kokabu, Y.; Ikeguchi, M.; Akashi, S. Homology modelled structure of the Beta-B2B3-crystallin heterodimer studied by ion mobility and radical probe mass spectrometry. FEBS J., 2011, 278, 4044-4054.
[15]
Downard, K.M.; Maleknia, S.D.; Akashi, S. Impact of limited oxidation on protein ion mobility and structure of importance to footprinting by radical probe mass spectrometry. Rapid Commun. Mass Spectrom., 2012, 26, 226-230.
[16]
Akashi, S.; Maleknia, S.D.; Saikusa, K.; Downard, K.M. Stability of the βB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. J. Struct. Biol., 2015, 189, 1-8.
[17]
Sclavi, B.; Woodson, S.; Sullivan, M.; Chance, M.R.; Brenowiz, M. Time-resolved synchrotron X-ray footprinting, a new approach to the study of nucleic acid structure and function: Application to protein-DNA interactions and RNA folding. J. Mol. Biol., 1997, 266, 144-159.
[18]
Tullius, T.D.; Dombroski, B.A. Hydroxyl radical “footprinting”: High resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA, 1986, 83, 5469-5473.
[19]
Wong, J.W.H.; Maleknia, S.D.; Downard, K.M. Photochemical and electrophysical production of radicals on millisecond timescales. A probe of protein structure, dynamics and interactions. Photochem. Photobiol. Sci., 2004, 3, 741-748.
[20]
Maleknia, S.D.; Ralston, C.Y.; Brenowitz, M.D.; Downard, K.M.; Chance, M.R. Determination of macromolecular folding and structure by synchrotron X-ray radiolysis techniques. Anal. Biochem., 2001, 289, 103-115.
[21]
Maleknia, S.D.; Downard, K.M. Unfolding of apomyoglobin helices by synchrotron radiolysis and mass spectrometry. Eur. J. Biochem., 2001, 268, 5578-5588.
[22]
Konermann, L.; Tong, X.; Pan, Y. Protein structure and dynamics studied by mass spectrometry: Hydrogen/deuterium exchange, hydroxyl radical labelling, and related approaches. J. Mass Spectrom., 2008, 43, 1021-1036.
[23]
Ha, J.W.; Schwahn, A.B.; Downard, K.M. Ability of N-acetylcarnosine to protect lens crystallins from oxidation and oxidative damage by Radical Probe Mass Spectrometry (RP-MS). Rapid Commun. Mass Spectrom., 2010, 24, 2900-2908.
[24]
Maleknia, S.D.; Downard, K.M. On-plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry. Rapid Commun. Mass Spectrom., 2012, 26, 2311-2318.
[25]
Maleknia, S.D.; Brenowitz, M.R.; Chance, M.R. Millsecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem., 1999, 71, 3965-3973.
[26]
Garrison, W.M. Reaction mechanisms in the radiolysis of peptides. Chem. Rev., 1987, 87, 381-398.
[27]
Xu, G.; Kiselar, J.; Qin, H.; Chance, M.R. Secondary reactions and strategies to improve quantitative footprinting. Anal. Chem., 2005, 77, 3029-3037.
[28]
Brieger, K.; Schiavone, S. Miller Jr.F.J.; Krause, K.H. Reactive
oxygen species: From health to disease. Eur. J. Med. Sci. 2012. 142, W13659
[29]
Maleknia, S.D.; Kiselar, J.G.; Downard, K.M. Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry. Rapid Commun. Mass Spectrom., 2002, 16, 53-61.
[30]
Hughson, F.M.; Wright, P.E.; Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science, 1990, 249, 1544-1548.
[31]
Chi, Z.; Asher, S.A. UV resonance Raman determination of protein acid denaturation: Selective unfolding of helical segments of horse myoglobin. Biochemistry, 1998, 37, 2865-2872.
[32]
Goldsmith, S.; Maleknia, S.D.; Almo, S.C.; Chance, M.R.; Downard, K.M. Synchrotron X-ray footprinting of profilin / poly-proline peptide complex. Biophys. J., 1999, 76, A172.
[33]
Goldsmith, S.; Maleknia, S.D.; Almo, S.C.; Chance, M.R. Synchrotron X-ray footprinting of the gelsolin-acting complex. Biophys. J., 2000, 78, 213.
[34]
Levit, S.; Berger, A. Ribonuclease S-peptide. A model for molecular recognition. J. Biol. Chem., 1976, 251, 1333-1339.
[35]
Wong, J.W.H.; Maleknia, S.D.; Downard, K.M. Study of the RNase S-protein S-peptide complex using a radical probe and electrospray ionization mass spectrometry. Anal. Chem., 2003, 75, 1557-1563.
[36]
Wong, J.W.H.; Maleknia, S.D.; Downard, K.M. Hydroxyl radical probe of the Calmodulin-Melittin complex interface by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2005, 16, 225-233.
[37]
Issa, S.; Downard, K.M. Interaction between alpha and upsilon-crystallin, common to the eye of the Australian platypus, by radical probe mass spectrometry. J. Mass Spectrom., 2006, 41, 1298-1303.
[38]
Downard, K.M.; Kokabu, Y.; Ikeguchi, M.; Akashi, S. Homology modelled structure of the Beta-B2B3-crystallin heterodimer studied by ion mobility and radical probe mass spectrometry. FEBS J., 2011, 278, 4044-4054.
[39]
Akashi, S.; Maleknia, S.D.; Saikusa, K.; Downard, K.M. Stability of the βB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. J. Struct. Biol., 2015, 189, 1-8.
[40]
Diemer, H.; Atmanene, C.; Sanglier, S.; Morrissey, B.; Van Dorsselaer, A.; Downard, K.M. Detection and structural features of the βB2-B3-crystallin heterodimer by Radical Probe Mass Spectrometry (RP-MS). J. Mass Spectrom., 2009, 44, 803-812.
[41]
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9, 237-248.
[42]
Reixach, N.; Deechongki, S.; Jiang, X.; Kelly, J.W.; Buxbaum, J.N. Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. USA, 2004, 101, 2817-2822.