[1]
Azam, S.S.; Uddin, R.; Wadood, A. Structure and dynamics of alpha-glucosidase through molecular dynamics simulation studies. J. Mol. Liq., 2012, 174, 58-62.
[2]
Hall, J.E. Guyton and Hall textbook of medical physiology; Elsevier Health Sciences, 2015.
[3]
Wu, X.Q.; Xu, H.; Yue, H.; Liu, K.Q.; Wang, X.Y. Inhibition kinetics and the aggregation of α-glucosidase by different denaturants. Protein J., 2009, 28(9-10), 448.
[4]
Sorensen, S.H.; Noren, O.; Sjostrom, H.; Danielsen, E.M. Amphiphilic pig intestinal microvillus maltase/glucoamylase. FEBS J., 1982, 126(3), 559-568.
[5]
Zafar, M.; Khan, H.; Rauf, A.; Khan, A.; Lodhi, M.A. In silico study of alkaloids as α-glucosidase inhibitors: Hope for the discovery of effective lead compounds. Front. Endocrinol., 2016, 7, 153.
[6]
Lin, A.H.M.; Lee, B.H.; Chang, W.J. Small intestine mucosal α-glucosidase: A missing feature of in vitro starch digestibility. Food Hydrocoll., 2016, 53, 163-171.
[7]
Seshadri, S.; Akiyama, T.; Opassiri, R.; Kuaprasert, B.; Cairns, J.K. Structural and enzymatic characterization of Os3BGlu6, a rice β-glucosidase hydrolyzing hydrophobic glycosides and (1→ 3)-and (1→ 2)-linked disaccharides. Plant Physiol., 2009, 151(1), 47-58.
[8]
Arthan, D.; Kittakoop, P.; Esen, A.; Svasti, J. Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry, 2006, 67(1), 27-33.
[9]
Xu, Z.; Escamilla-Treviño, L.; Zeng, L.; Lalgondar, M.; Bevan, D.; Winkel, B.; Mohamed, A.; Cheng, C.L.; Shih, M.C.; Poulton, J. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol., 2004, 55(3), 343-367.
[10]
Khan, M.A.; Khan, H.; Ali, T. Withanolides isolated from Withania somnifera with α-glucosidase inhibition. Med. Chem. Res., 2014, 23(5), 2386-2390.
[11]
Mochizuki, K.; Hanai, E.; Suruga, K.; Kuranuki, S.; Goda, T. Changes in α-glucosidase activities along the jejunal-ileal axis of normal rats by the α-glucosidase inhibitor miglitol. Metabolism, 2010, 59(10), 1442-1447.
[12]
Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Castilla, S.A.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as Neuroprotective Agent: Of mice and men. Pharmacol. Res., 2018, 128, 359-365.
[13]
Abbas, G.; Al-Harrasi, A.S.; Hussain, H. Chapter 9 - α-glucosidase
enzyme inhibitors from natural products A2 - Brahmachari,
Goutam. In: Discovery and Development of Antidiabetic Agents
from Natural Products, Elsevier: 2017; pp. 251-269.
[14]
Papandréou, M.J.; Barbouche, R.; Guieu, R.; Kieny, M.P.; Fenouillet, E. The α-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step. Mol. Pharmacol., 2002, 61(1), 186-193.
[15]
Kim, S.D. α-Glucosidase Inhibitor Isolated from Coffee. J. Microbiol. Biotechnol., 2015, 25(2), 174-177.
[16]
Lejeune, N.; Thines-Sempoux, D.; Hers, H. Tissue fractionation studies. 16. Intracellular distribution and properties of α-glucosidases in rat liver. Biochem. J., 1963, 86(1), 16-21.
[17]
van Soolingen, D.; Hermans, P.; De Haas, P.; Soll, D.; Van Embden, J. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol., 1991, 29(11), 2578-2586.
[18]
Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett., 1998, 430(1), 17-22.
[19]
Chang, J.; Block, T.M.; Guo, J.T. Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions. Antiviral Res., 2013, 99(3), 251-260.
[20]
Khan, H.; Nabavi, S.M.; Sureda, A.; Mehterov, N.; Gulei, D.; Berindan-Neagoe, I.; Taniguchi, H.; Atanasov, A.G. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum. Eur. J. Med. Chem., 2018, 153, 29-33.
[21]
Khan, H.; Khan, Z.; Amin, S.; Mabkhot, Y.N.; Mubarak, M.S.; Hadda, T.B.; Maione, F. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomed. Pharmacother., 2017, 93, 498-509.
[22]
Khan, H.; Khan, M.A.; Hussain, S.; Gaffar, R.; Ashraf, N. In vivo antinociceptive and anticonvulsant activity of extracts of Heliotropium strigosum. Toxicol. Ind. Health, 2016, 32(5), 860-865.
[23]
Khan, H.; Amin, S. ACE inhibition of plant alkaloids. Targeted approach for selective inhibition. Mini Rev. Org. Chem., 2017, 14, 85-89.
[24]
Khan, H. Brilliant future of phytomedicines in the light of latest technological developments. J. Phytopharmacol., 2015, 4(1), 58-60.
[25]
Khan, H. Medicinal plants in light of history recognized therapeutic modality. J. Evid. Based Complementary Altern. Med., 2014, 19(3), 216-219.
[26]
Khan, H. Medicinal plants need biological screening: A future treasure as therapeutic agents. Biol. Med., 2014, 6, e110.
[27]
Rauf, A.; Uysal, S.; Hadda, T.B.; Siddiqui, B.S.; Khan, H.; Khan, M.A.; Ijaz, M.; Mubarak, M.S.; Bawazeer, S.; Abu-Izneid, T.; Khan, A.; Farooq, U. Antibacterial, cytotoxicity, and phytotoxicity profiles of three medicinal plants collected from Pakistan. Marmara Pharm. J., 2017, 21(2), 261-268.
[28]
Ain, Q.; Khan, H.; Mubarak, M.; Pervaiz, A. Plant alkaloids as antiplatelet agent: Drugs of future in the light of recent development. Front. Pharmacol., 2016, 7, 292.
[29]
Jawad, M.; Khan, H.; Pervez, S.; Bawazeer, S.S.; Abu-Izneid, T.; Saeed, M.; Kamal, M.A. Pharmacological validation of the anxiolytic, muscle relaxant and sedative like activities of Capsicum annuum in animal model. Bangladesh J. Pharmacol., 2017, 12(4), 439-447.
[30]
Khan, H.; Amin, S.; Patel, S. Targeting BDNF modulation by plant glycosides as a novel therapeutic strategy in the treatment of depression. Life Sci., 2018, 196, 18-27.
[31]
Farooq, U.; Khan, A.; Naz, S.; Rauf, A.; Khan, H.; Khan, A.; Ullah, I.; Bukhari, S.M. Sedative and antinociceptive activities of two new sesquiterpenes isolated from Ricinus communis. Chin. J. Nat. Med., 2018, 16(3), 225-230.
[32]
Kaleem, W.A.; Muhammad, N.; Khan, H.; Rauf, A. Zia-ul-Haq, M.; Qayum, M.; Khan, A.Z.; Nisar, M.; Obaidullah, Antioxidant potential of cyclopeptide alkaloids isolated from Zizyphus oxyphylla. J. Chem. Soc. Pak., 2015, 36(3), 474-478.
[33]
Rauf, A.; Hadda, T.B.; Uddin, G.; Cerón-Carrasco, J.P.; Peña-García, J.; Pérez-Sánchez, H.; Khan, H.; Bawazeer, S.; Patel, S.; Mubarak, M.S.; Abu-Izneid, T.; Mabkhot, Y.N. Sedative-hypnotic-like effect and molecular docking of di-naphthodiospyrol from Diospyros lotus in an animal model. Biomed. Pharmacother., 2017, 88, 109-113.
[34]
Rauf, A.; Khan, R.; Khan, H.; Khan, I.; Akram, M. Xanthine oxidase inhibition of bioactive constituents isolated from Potentilla evestita. J. Chem. Soc. Pak., 2016, 38(1), 139-142.
[35]
Rauf, A.; Uddin, G.; Khan, H.; Siddiqui, B.S.; Arfan, M. Anti-hyperalgesic activity of crude extract and 7-methyljuglone of Diospyros lotus roots. Nat. Prod. Res., 2015, 29(23), 2226-2229.
[36]
Khattak, S.; Khan, H. Phyto-glycosides as therapeutic target in the treatment of diabetes. Mini Rev. Med. Chem., 2018, 18, 208-215.
[37]
Sumaira, K.; Haroon, K. Phyto-glycosides as therapeutic target in the treatment of diabetes. Mini Rev. Med. Chem., 2016, 16, 1-1.
[38]
Marya; Khan, H.; Ahmad, I. Glycosides as possible lead antimalarial in new drug discovery: Future perspectives. Curr. Drug Metab., 2017, 18, 402-403.
[39]
Zhou, Z.l.; Yin, W.Q.; Yang, Y.M.; He, C.H.; Li, X.N.; Zhou, C.P.; Guo, H. New iridoid glycosides with antidepressant activity isolated from Cyperus rotundus. Chem. Pharm. Bull., 2016, 64(1), 73-77.
[40]
Khan, H.; Pervaiz, A.; Kamal, M.A.; Patel, S. Antiplatelet potential of plant-derived glycosides as possible lead compounds. Curr. Drug Metab., 2018, 19, 856-862.
[41]
Liao, M.; Dai, C.; Liu, M.; Chen, J.; Chen, Z.; Xie, Z.; Yao, M. Simultaneous determination of four furostanol glycosides in rat plasma by UPLC-MS/MS and its application to PK study after oral administration of Dioscorea nipponica extracts. J. Pharm. Biomed. Anal., 2016, 117, 372-379.
[42]
Kallemeijn, W.W.; Witte, M.D.; Wennekes, T.; Aerts, J.M.F.G. Chapter 4 - Mechanism-Based Inhibitors of Glycosidases: Design and Applications. In:Advances in Carbohydrate Chemistry and Biochemistry; Derek, H., Ed.; Academic Press, 2014, Vol. 71, pp. 297-338.
[43]
Li, J.Y.; Li, H.M.; Liu, D.; Chen, X.Q.; Chen, C.H.; Li, R.T. Three new acylated prenylflavonol glycosides from Epimedium koreanum. Phytochem. Lett., 2016, 17, 206-212.
[44]
Chen, Y.G.; Li, P.; Li, P.; Yan, R.; Zhang, X.Q.; Wang, Y.; Zhang, X.T.; Ye, W.C.; Zhang, Q.W. α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium. Molecules, 2013, 18(4), 4221-4232.
[45]
Lin, Y.S.; Lee, S.S. Flavonol glycosides with α-glucosidase inhibitory activities and new flavone C-Diosides from the leaves of Machilus konishii. Helv. Chim. Acta, 2014, 97(12), 1672-1682.
[46]
Pan, L.L.; Fang, P.L.; Zhang, X.J.; Ni, W.; Li, L.; Yang, L.M.; Chen, C.X.; Zheng, Y.T.; Li, C.T.; Hao, X.J.; Liu, H.Y. Tigliane-Type Diterpenoid Glycosides from Euphorbia fischeriana. J. Nat. Prod., 2011, 74(6), 1508-1512.
[47]
Bustos-Brito, C.; Sánchez-Castellanos, M.; Esquivel, B.; Calderón, J.S.; Calzada, F.; Yépez-Mulia, L.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. ent-Kaurene Glycosides from Ageratina cylindrica. J. Nat. Prod., 2015, 78(11), 2580-2587.
[48]
Kimura, H.; Tokuyama, S.; Ishihara, T.; Ogawa, S.; Yokota, K. Identification of new flavonol O-glycosides from indigo (Polygonum tinctorium Lour) leaves and their inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase. J. Pharm. Biomed. Anal., 2015, 108, 102-112.
[49]
Dembitsky, V.M. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids, 2005, 40(9), 869-900.
[50]
Okoye, F.B.C.; Sawadogo, W.R.; Sendker, J.; Aly, A.H.; Quandt, B.; Wray, V.; Hensel, A.; Esimone, C.O.; Debbab, A.; Diederich, M.; Proksch, P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. J. Ethnopharmacol., 2015, 176, 27-34.
[51]
Zi, C.T.; Yang, D.; Dong, F-W.; Li, G.T.; Li, Y.; Ding, Z.T.; Zhou, J.; Jiang, Z.H.; Hu, J.M. Synthesis and antitumor activity of novel per-butyrylated glycosides of podophyllotoxin and its derivatives. Bioorg. Med. Chem., 2015, 23(7), 1437-1446.
[52]
Srinivas, B.; Reddy, T.R.; Kashyap, S. Ruthenium catalyzed synthesis of 2,3-unsaturated C-glycosides from glycals. Carbohydr. Res., 2015, 406, 86-92.
[53]
Gloster, T.M.; Roberts, S.; Ducros, V.M.; Perugino, G.; Rossi, M.; Hoos, R.; Moracci, M.; Vasella, A.; Davies, G.J. Structural studies of the β-glycosidase from Sulfolobus solfataricus in complex with covalently and noncovalently bound inhibitors. Biochemistry, 2004, 43(20), 6101-6109.
[54]
Gloster, T.M.; Meloncelli, P.; Stick, R.V.; Zechel, D.; Vasella, A.; Davies, G.J. Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics. J. Am. Chem. Soc., 2007, 129(8), 2345-2354.
[55]
Rempel, B.P.; Withers, S.G. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiol., 2008, 18(8), 570-586.
[56]
Jabeen, B.; Riaz, N.; Saleem, M.; Naveed, M.A.; Ashraf, M.; Alam, U.; Rafiq, H.M.; Tareen, R.B.; Jabbar, A. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity. Phytochemistry, 2013, 96, 443-448.
[57]
Yue, Y.D.; Zhang, Y.T.; Liu, Z.X.; Min, Q.X.; Wan, L.S.; Wang, Y.L.; Xiao, Z.Q.; Chen, J.C. Xanthone glycosides from Swertia bimaculata with α-glucosidase inhibitory activity. Planta Med., 2014, 80, 502-508.
[58]
Luo, C-T.; Zheng, H.H.; Mao, S.S.; Yang, M.X.; Luo, C.; Chen, H. Xanthones from Swertia mussotii and their α-glycosidase inhibitory activities. Planta Med., 2014, 80(2-3), 201-208.
[59]
Hua, J.; Qi, J.; Yu, B.Y. Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their α-Glucosidase inhibitory activities. Fitoterapia, 2014, 93, 67-73.
[60]
Liu, Q.; Hu, H.J.; Li, P.F.; Yang, Y.B.; Wu, L.H.; Chou, G.X.; Wang, Z.T. Diterpenoids and phenylethanoid glycosides from the roots of Clerodendrum bungei and their inhibitory effects against angiotensin converting enzyme and α-glucosidase. Phytochemistry, 2014, 103, 196-202.
[61]
Pan, J.T.; Yu, B.W.; Yin, Y.Q.; Li, J.H.; Wang, L.; Guo, L.B.; Shen, Z.B. Four new pentasaccharide resin glycosides from Ipomoea cairica with strong α-Glucosidase inhibitory activity. Molecules, 2015, 20(4), 6601-6610.
[62]
Wang, L.; Yan, Y.S.; Cui, H.H.; Yin, Y.Q.; Pan, J.T.; Yu, B.W. Three new resin glycosides compounds from Argyreia acuta and their α-glucosidase inhibitory activity. Nat. Prod. Res., 2016, 31(5), 537-542.
[63]
Sun, S.; Kadouh, H.C.; Zhu, W.; Zhou, K. Bioactivity-guided isolation and purification of α-glucosidase inhibitor, 6-O-D-glycosides, from Tinta Cao grape pomace. J. Funct. Foods, 2016, 23, 573-579.
[64]
Sekar, V.; Chakraborty, S.; Mani, S.; Sali, V.K.; Vasanthi, H.R. Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. S. Afr. J. Bot., 2018, 120, 129-134.
[65]
Rosas-Ramírez, D.; Escandón-Rivera, S.; Pereda-Miranda, R. Morning glory resin glycosides as α-glucosidase inhibitors: In vitro and In silico analysis. Phytochemistry, 2018, 148, 39-47.
[66]
Samoshin, A.V.; Dotsenko, I.A.; Samoshina, N.M.; Franz, A.H.; Samoshin, V.V. Thio-beta-D-glucosides: Synthesis and evaluation
as glycosidase inhibitors and activators. Int. J. Carbohyd. Chem.,2014, 2014, Article ID 941059, 8 pages.
[67]
Cardullo, N.; Spatafora, C.; Musso, N.; Barresi, V.; Condorelli, D.; Tringali, C. Resveratrol-related polymethoxystilbene glycosides: Synthesis, antiproliferative activity, and glycosidase Inhibition. J. Nat. Prod., 2015, 78(11), 2675-2683.
[68]
Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness, 2014, 3(3), 136-174.
[69]
Bartnik, M.; Facey, P.C. Chapter 8 - Glycosides A2 - Badal, Simone. In:Pharmacognosy; Delgoda, R., Ed.; Academic Press: Boston, 2017, pp. 101-161.
[70]
Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84(Suppl. C), 1036-1041.
[71]
Ratananikom, K.; Choengpanya, K.; Tongtubtim, N.; Charoenrat, T.; Withers, S.G.; Kongsaeree, P.T. Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides. Carbohydr. Res., 2013, 373(Suppl. C), 35-41.
[72]
Thai, N.Q.; Nguyen, H.L.; Linh, H.Q.; Li, M.S. Protocol for fast screening of multi-target drug candidates: Application to Alzheimer’s disease. J. Mol. Graph. Model., 2017, 77(Suppl. C), 121-129.
[73]
Lu, J.J.; Pan, W.; Hu, Y.J.; Wang, Y.T. Multi-Target Drugs: The Trend of Drug Research and Development. PLoS One, 2012, 7(6), e40262.
[74]
Huo, X.; Liu, K. Renal organic anion transporters in drug-drug interactions and diseases. Eur. J. Pharm. Sci., 2018, 112(Suppl. C), 8-19.
[75]
Htwe, T.H.; Khardori, N.M. Legionnaire’s Disease and Immunosuppressive Drugs. Infect. Dis. Clin. North Am., 2017, 31(1), 29-42.
[76]
Brinkman, A.K. Management of Type 1 Diabetes. Nurs. Clin. North Am., 2017, 52(4), 499-511.
[77]
Holman, R.R.; Sourij, H.; Califf, R.M. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet, 2017, 383(9933), 2008-2017.
[78]
Mbue, N.D.; Mbue, J.E.; Anderson, J.A. Management of Lipids in Patients with Diabetes. Nurs. Clin. North Am., 2017, 52(4), 605-619.
[79]
Thrasher, J. Pharmacologic management of Type 2 diabetes mellitus: Available Therapies. Am. J. Med., 2017, 130(6)(Suppl.), S4-S17.
[80]
Upadhyay, J.; Polyzos, S.A.; Perakakis, N.; Thakkar, B.; Paschou, S.A.; Katsiki, N.; Underwood, P.; Park, K.H.; Seufert, J.; Kang, E.S.; Sternthal, E.; Karagiannis, A.; Mantzoros, C.S. Pharmacotherapy of type 2 diabetes: An update. Metabolism, 2018, 78(Suppl. C), 13-42.
[81]
Panter, K.E. Chapter 64 - Cyanogenic Glycoside–Containing Plants
A2 - Gupta, Ramesh C. In: Veterinary Toxicology (Third Edition),
Academic Press: 2018; pp. 935-940.
[82]
Lam, K.K.; Lau, F.L. An incident of hydrogen cyanide poisoning. Am. J. Emerg. Med., 2000, 18(2), 172-175.
[83]
Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur. Food Chem., 2016, 203, 483-490.
[84]
Ballhorn, D.J. Chapter 14 - Cyanogenic Glycosides in Nuts and Seeds A2 - Preedy, Victor R. In:Nuts and Seeds in Health and Disease Prevention; Watson, R.R.; Patel, V.B., Eds.; Academic Press: San Diego, 2011, pp. 129-136.
[85]
Johansen, H.; Rasmussen, L.H.; Olsen, C.E.; Bruun Hansen, H.C. Rate of hydrolysis and degradation of the cyanogenic glycoside – dhurrin - in soil. Chemosphere, 2007, 67(2), 259-266.
[86]
Kaita, Y.; Tarui, T.; Shoji, T.; Miyauchi, H.; Yamaguchi, Y. Cyanide poisoning is a possible cause of cardiac arrest among fire victims, and empiric antidote treatment may improve outcomes. The Am. J. Emerg. Med., 2018, 36(5), 851-853.
[87]
Appendino, G.; Pollastro, F. Plants: Revamping the oldest source of medicines with modern science. In:Natural Product Chemistry for Drug Discovery; The Royal Society of Chemistry, 2009, pp. 140-173.
[88]
David, B.; Wolfender, J.L.; Dias, D.A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev., 2014, 14(2), 299-315.
[89]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.