Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Plant-derived Glycosides with α-Glucosidase Inhibitory Activity: Current Standing and Future Prospects

Author(s): Haroon Khan*, Surrya Amin, Devesh Tewari, Seyed Mohammad Nabavi and Atanas G. Atanasov

Volume 19, Issue 4, 2019

Page: [391 - 401] Pages: 11

DOI: 10.2174/1871530319666181128104831

Price: $65

Abstract

Background: The α-glucosidase (EC 3.2.1.20), a calcium-containing intestinal enzyme which is positioned in the cells which cover the intestinal microvilli brush border. The carbohydrates require metabolism by α-glucosidase before being absorbed into the small intestine, and as a result, this enzyme represents a significant drug target for the effective management of diabetes. There are few α- glucosidase inhibitors in the clinical practice that is challenged by several limitations. Thus, new effective and safe therapeutic agents in this class are required. In this regard, plant secondary metabolites are a very promising source to be investigated. Herein in this review, we have focused on the preclinical studies on various glycosides with in vitro α-glucosidase inhibitory activity.

Methods: The literature available on various websites such as GoogleScholar, PubMed, Scopus. All the peer-reviewed articles were included without considering the impact factor.

Results: The surveyed literature revealed marked inhibitory profile of various glycosides derived from plants, and some of them were extremely potent relatively to the standard, acarbose in preclinical trials and exhibited multiple targeted effects.

Conclusion: Keeping in view the results, these glycosides are strong candidates for further, more detailed studies to ascertain their clinical potential and for effective contribution in effective management of diabetes, where multiple targets are required to address.

Keywords: Plant glycosides, α-glucosidase inhibition, SAR studies, synthetic derivatives, lead candidates, cyanogenic glycosides.

Graphical Abstract

[1]
Azam, S.S.; Uddin, R.; Wadood, A. Structure and dynamics of alpha-glucosidase through molecular dynamics simulation studies. J. Mol. Liq., 2012, 174, 58-62.
[2]
Hall, J.E. Guyton and Hall textbook of medical physiology; Elsevier Health Sciences, 2015.
[3]
Wu, X.Q.; Xu, H.; Yue, H.; Liu, K.Q.; Wang, X.Y. Inhibition kinetics and the aggregation of α-glucosidase by different denaturants. Protein J., 2009, 28(9-10), 448.
[4]
Sorensen, S.H.; Noren, O.; Sjostrom, H.; Danielsen, E.M. Amphiphilic pig intestinal microvillus maltase/glucoamylase. FEBS J., 1982, 126(3), 559-568.
[5]
Zafar, M.; Khan, H.; Rauf, A.; Khan, A.; Lodhi, M.A. In silico study of alkaloids as α-glucosidase inhibitors: Hope for the discovery of effective lead compounds. Front. Endocrinol., 2016, 7, 153.
[6]
Lin, A.H.M.; Lee, B.H.; Chang, W.J. Small intestine mucosal α-glucosidase: A missing feature of in vitro starch digestibility. Food Hydrocoll., 2016, 53, 163-171.
[7]
Seshadri, S.; Akiyama, T.; Opassiri, R.; Kuaprasert, B.; Cairns, J.K. Structural and enzymatic characterization of Os3BGlu6, a rice β-glucosidase hydrolyzing hydrophobic glycosides and (1→ 3)-and (1→ 2)-linked disaccharides. Plant Physiol., 2009, 151(1), 47-58.
[8]
Arthan, D.; Kittakoop, P.; Esen, A.; Svasti, J. Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry, 2006, 67(1), 27-33.
[9]
Xu, Z.; Escamilla-Treviño, L.; Zeng, L.; Lalgondar, M.; Bevan, D.; Winkel, B.; Mohamed, A.; Cheng, C.L.; Shih, M.C.; Poulton, J. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol., 2004, 55(3), 343-367.
[10]
Khan, M.A.; Khan, H.; Ali, T. Withanolides isolated from Withania somnifera with α-glucosidase inhibition. Med. Chem. Res., 2014, 23(5), 2386-2390.
[11]
Mochizuki, K.; Hanai, E.; Suruga, K.; Kuranuki, S.; Goda, T. Changes in α-glucosidase activities along the jejunal-ileal axis of normal rats by the α-glucosidase inhibitor miglitol. Metabolism, 2010, 59(10), 1442-1447.
[12]
Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Castilla, S.A.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as Neuroprotective Agent: Of mice and men. Pharmacol. Res., 2018, 128, 359-365.
[13]
Abbas, G.; Al-Harrasi, A.S.; Hussain, H. Chapter 9 - α-glucosidase enzyme inhibitors from natural products A2 - Brahmachari, Goutam. In: Discovery and Development of Antidiabetic Agents from Natural Products, Elsevier: 2017; pp. 251-269.
[14]
Papandréou, M.J.; Barbouche, R.; Guieu, R.; Kieny, M.P.; Fenouillet, E. The α-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step. Mol. Pharmacol., 2002, 61(1), 186-193.
[15]
Kim, S.D. α-Glucosidase Inhibitor Isolated from Coffee. J. Microbiol. Biotechnol., 2015, 25(2), 174-177.
[16]
Lejeune, N.; Thines-Sempoux, D.; Hers, H. Tissue fractionation studies. 16. Intracellular distribution and properties of α-glucosidases in rat liver. Biochem. J., 1963, 86(1), 16-21.
[17]
van Soolingen, D.; Hermans, P.; De Haas, P.; Soll, D.; Van Embden, J. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol., 1991, 29(11), 2578-2586.
[18]
Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett., 1998, 430(1), 17-22.
[19]
Chang, J.; Block, T.M.; Guo, J.T. Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions. Antiviral Res., 2013, 99(3), 251-260.
[20]
Khan, H.; Nabavi, S.M.; Sureda, A.; Mehterov, N.; Gulei, D.; Berindan-Neagoe, I.; Taniguchi, H.; Atanasov, A.G. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum. Eur. J. Med. Chem., 2018, 153, 29-33.
[21]
Khan, H.; Khan, Z.; Amin, S.; Mabkhot, Y.N.; Mubarak, M.S.; Hadda, T.B.; Maione, F. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomed. Pharmacother., 2017, 93, 498-509.
[22]
Khan, H.; Khan, M.A.; Hussain, S.; Gaffar, R.; Ashraf, N. In vivo antinociceptive and anticonvulsant activity of extracts of Heliotropium strigosum. Toxicol. Ind. Health, 2016, 32(5), 860-865.
[23]
Khan, H.; Amin, S. ACE inhibition of plant alkaloids. Targeted approach for selective inhibition. Mini Rev. Org. Chem., 2017, 14, 85-89.
[24]
Khan, H. Brilliant future of phytomedicines in the light of latest technological developments. J. Phytopharmacol., 2015, 4(1), 58-60.
[25]
Khan, H. Medicinal plants in light of history recognized therapeutic modality. J. Evid. Based Complementary Altern. Med., 2014, 19(3), 216-219.
[26]
Khan, H. Medicinal plants need biological screening: A future treasure as therapeutic agents. Biol. Med., 2014, 6, e110.
[27]
Rauf, A.; Uysal, S.; Hadda, T.B.; Siddiqui, B.S.; Khan, H.; Khan, M.A.; Ijaz, M.; Mubarak, M.S.; Bawazeer, S.; Abu-Izneid, T.; Khan, A.; Farooq, U. Antibacterial, cytotoxicity, and phytotoxicity profiles of three medicinal plants collected from Pakistan. Marmara Pharm. J., 2017, 21(2), 261-268.
[28]
Ain, Q.; Khan, H.; Mubarak, M.; Pervaiz, A. Plant alkaloids as antiplatelet agent: Drugs of future in the light of recent development. Front. Pharmacol., 2016, 7, 292.
[29]
Jawad, M.; Khan, H.; Pervez, S.; Bawazeer, S.S.; Abu-Izneid, T.; Saeed, M.; Kamal, M.A. Pharmacological validation of the anxiolytic, muscle relaxant and sedative like activities of Capsicum annuum in animal model. Bangladesh J. Pharmacol., 2017, 12(4), 439-447.
[30]
Khan, H.; Amin, S.; Patel, S. Targeting BDNF modulation by plant glycosides as a novel therapeutic strategy in the treatment of depression. Life Sci., 2018, 196, 18-27.
[31]
Farooq, U.; Khan, A.; Naz, S.; Rauf, A.; Khan, H.; Khan, A.; Ullah, I.; Bukhari, S.M. Sedative and antinociceptive activities of two new sesquiterpenes isolated from Ricinus communis. Chin. J. Nat. Med., 2018, 16(3), 225-230.
[32]
Kaleem, W.A.; Muhammad, N.; Khan, H.; Rauf, A. Zia-ul-Haq, M.; Qayum, M.; Khan, A.Z.; Nisar, M.; Obaidullah, Antioxidant potential of cyclopeptide alkaloids isolated from Zizyphus oxyphylla. J. Chem. Soc. Pak., 2015, 36(3), 474-478.
[33]
Rauf, A.; Hadda, T.B.; Uddin, G.; Cerón-Carrasco, J.P.; Peña-García, J.; Pérez-Sánchez, H.; Khan, H.; Bawazeer, S.; Patel, S.; Mubarak, M.S.; Abu-Izneid, T.; Mabkhot, Y.N. Sedative-hypnotic-like effect and molecular docking of di-naphthodiospyrol from Diospyros lotus in an animal model. Biomed. Pharmacother., 2017, 88, 109-113.
[34]
Rauf, A.; Khan, R.; Khan, H.; Khan, I.; Akram, M. Xanthine oxidase inhibition of bioactive constituents isolated from Potentilla evestita. J. Chem. Soc. Pak., 2016, 38(1), 139-142.
[35]
Rauf, A.; Uddin, G.; Khan, H.; Siddiqui, B.S.; Arfan, M. Anti-hyperalgesic activity of crude extract and 7-methyljuglone of Diospyros lotus roots. Nat. Prod. Res., 2015, 29(23), 2226-2229.
[36]
Khattak, S.; Khan, H. Phyto-glycosides as therapeutic target in the treatment of diabetes. Mini Rev. Med. Chem., 2018, 18, 208-215.
[37]
Sumaira, K.; Haroon, K. Phyto-glycosides as therapeutic target in the treatment of diabetes. Mini Rev. Med. Chem., 2016, 16, 1-1.
[38]
Marya; Khan, H.; Ahmad, I. Glycosides as possible lead antimalarial in new drug discovery: Future perspectives. Curr. Drug Metab., 2017, 18, 402-403.
[39]
Zhou, Z.l.; Yin, W.Q.; Yang, Y.M.; He, C.H.; Li, X.N.; Zhou, C.P.; Guo, H. New iridoid glycosides with antidepressant activity isolated from Cyperus rotundus. Chem. Pharm. Bull., 2016, 64(1), 73-77.
[40]
Khan, H.; Pervaiz, A.; Kamal, M.A.; Patel, S. Antiplatelet potential of plant-derived glycosides as possible lead compounds. Curr. Drug Metab., 2018, 19, 856-862.
[41]
Liao, M.; Dai, C.; Liu, M.; Chen, J.; Chen, Z.; Xie, Z.; Yao, M. Simultaneous determination of four furostanol glycosides in rat plasma by UPLC-MS/MS and its application to PK study after oral administration of Dioscorea nipponica extracts. J. Pharm. Biomed. Anal., 2016, 117, 372-379.
[42]
Kallemeijn, W.W.; Witte, M.D.; Wennekes, T.; Aerts, J.M.F.G. Chapter 4 - Mechanism-Based Inhibitors of Glycosidases: Design and Applications. In:Advances in Carbohydrate Chemistry and Biochemistry; Derek, H., Ed.; Academic Press, 2014, Vol. 71, pp. 297-338.
[43]
Li, J.Y.; Li, H.M.; Liu, D.; Chen, X.Q.; Chen, C.H.; Li, R.T. Three new acylated prenylflavonol glycosides from Epimedium koreanum. Phytochem. Lett., 2016, 17, 206-212.
[44]
Chen, Y.G.; Li, P.; Li, P.; Yan, R.; Zhang, X.Q.; Wang, Y.; Zhang, X.T.; Ye, W.C.; Zhang, Q.W. α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium. Molecules, 2013, 18(4), 4221-4232.
[45]
Lin, Y.S.; Lee, S.S. Flavonol glycosides with α-glucosidase inhibitory activities and new flavone C-Diosides from the leaves of Machilus konishii. Helv. Chim. Acta, 2014, 97(12), 1672-1682.
[46]
Pan, L.L.; Fang, P.L.; Zhang, X.J.; Ni, W.; Li, L.; Yang, L.M.; Chen, C.X.; Zheng, Y.T.; Li, C.T.; Hao, X.J.; Liu, H.Y. Tigliane-Type Diterpenoid Glycosides from Euphorbia fischeriana. J. Nat. Prod., 2011, 74(6), 1508-1512.
[47]
Bustos-Brito, C.; Sánchez-Castellanos, M.; Esquivel, B.; Calderón, J.S.; Calzada, F.; Yépez-Mulia, L.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. ent-Kaurene Glycosides from Ageratina cylindrica. J. Nat. Prod., 2015, 78(11), 2580-2587.
[48]
Kimura, H.; Tokuyama, S.; Ishihara, T.; Ogawa, S.; Yokota, K. Identification of new flavonol O-glycosides from indigo (Polygonum tinctorium Lour) leaves and their inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase. J. Pharm. Biomed. Anal., 2015, 108, 102-112.
[49]
Dembitsky, V.M. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids, 2005, 40(9), 869-900.
[50]
Okoye, F.B.C.; Sawadogo, W.R.; Sendker, J.; Aly, A.H.; Quandt, B.; Wray, V.; Hensel, A.; Esimone, C.O.; Debbab, A.; Diederich, M.; Proksch, P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. J. Ethnopharmacol., 2015, 176, 27-34.
[51]
Zi, C.T.; Yang, D.; Dong, F-W.; Li, G.T.; Li, Y.; Ding, Z.T.; Zhou, J.; Jiang, Z.H.; Hu, J.M. Synthesis and antitumor activity of novel per-butyrylated glycosides of podophyllotoxin and its derivatives. Bioorg. Med. Chem., 2015, 23(7), 1437-1446.
[52]
Srinivas, B.; Reddy, T.R.; Kashyap, S. Ruthenium catalyzed synthesis of 2,3-unsaturated C-glycosides from glycals. Carbohydr. Res., 2015, 406, 86-92.
[53]
Gloster, T.M.; Roberts, S.; Ducros, V.M.; Perugino, G.; Rossi, M.; Hoos, R.; Moracci, M.; Vasella, A.; Davies, G.J. Structural studies of the β-glycosidase from Sulfolobus solfataricus in complex with covalently and noncovalently bound inhibitors. Biochemistry, 2004, 43(20), 6101-6109.
[54]
Gloster, T.M.; Meloncelli, P.; Stick, R.V.; Zechel, D.; Vasella, A.; Davies, G.J. Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics. J. Am. Chem. Soc., 2007, 129(8), 2345-2354.
[55]
Rempel, B.P.; Withers, S.G. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiol., 2008, 18(8), 570-586.
[56]
Jabeen, B.; Riaz, N.; Saleem, M.; Naveed, M.A.; Ashraf, M.; Alam, U.; Rafiq, H.M.; Tareen, R.B.; Jabbar, A. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity. Phytochemistry, 2013, 96, 443-448.
[57]
Yue, Y.D.; Zhang, Y.T.; Liu, Z.X.; Min, Q.X.; Wan, L.S.; Wang, Y.L.; Xiao, Z.Q.; Chen, J.C. Xanthone glycosides from Swertia bimaculata with α-glucosidase inhibitory activity. Planta Med., 2014, 80, 502-508.
[58]
Luo, C-T.; Zheng, H.H.; Mao, S.S.; Yang, M.X.; Luo, C.; Chen, H. Xanthones from Swertia mussotii and their α-glycosidase inhibitory activities. Planta Med., 2014, 80(2-3), 201-208.
[59]
Hua, J.; Qi, J.; Yu, B.Y. Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their α-Glucosidase inhibitory activities. Fitoterapia, 2014, 93, 67-73.
[60]
Liu, Q.; Hu, H.J.; Li, P.F.; Yang, Y.B.; Wu, L.H.; Chou, G.X.; Wang, Z.T. Diterpenoids and phenylethanoid glycosides from the roots of Clerodendrum bungei and their inhibitory effects against angiotensin converting enzyme and α-glucosidase. Phytochemistry, 2014, 103, 196-202.
[61]
Pan, J.T.; Yu, B.W.; Yin, Y.Q.; Li, J.H.; Wang, L.; Guo, L.B.; Shen, Z.B. Four new pentasaccharide resin glycosides from Ipomoea cairica with strong α-Glucosidase inhibitory activity. Molecules, 2015, 20(4), 6601-6610.
[62]
Wang, L.; Yan, Y.S.; Cui, H.H.; Yin, Y.Q.; Pan, J.T.; Yu, B.W. Three new resin glycosides compounds from Argyreia acuta and their α-glucosidase inhibitory activity. Nat. Prod. Res., 2016, 31(5), 537-542.
[63]
Sun, S.; Kadouh, H.C.; Zhu, W.; Zhou, K. Bioactivity-guided isolation and purification of α-glucosidase inhibitor, 6-O-D-glycosides, from Tinta Cao grape pomace. J. Funct. Foods, 2016, 23, 573-579.
[64]
Sekar, V.; Chakraborty, S.; Mani, S.; Sali, V.K.; Vasanthi, H.R. Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. S. Afr. J. Bot., 2018, 120, 129-134.
[65]
Rosas-Ramírez, D.; Escandón-Rivera, S.; Pereda-Miranda, R. Morning glory resin glycosides as α-glucosidase inhibitors: In vitro and In silico analysis. Phytochemistry, 2018, 148, 39-47.
[66]
Samoshin, A.V.; Dotsenko, I.A.; Samoshina, N.M.; Franz, A.H.; Samoshin, V.V. Thio-beta-D-glucosides: Synthesis and evaluation as glycosidase inhibitors and activators. Int. J. Carbohyd. Chem.,2014, 2014, Article ID 941059, 8 pages.
[67]
Cardullo, N.; Spatafora, C.; Musso, N.; Barresi, V.; Condorelli, D.; Tringali, C. Resveratrol-related polymethoxystilbene glycosides: Synthesis, antiproliferative activity, and glycosidase Inhibition. J. Nat. Prod., 2015, 78(11), 2675-2683.
[68]
Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness, 2014, 3(3), 136-174.
[69]
Bartnik, M.; Facey, P.C. Chapter 8 - Glycosides A2 - Badal, Simone. In:Pharmacognosy; Delgoda, R., Ed.; Academic Press: Boston, 2017, pp. 101-161.
[70]
Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84(Suppl. C), 1036-1041.
[71]
Ratananikom, K.; Choengpanya, K.; Tongtubtim, N.; Charoenrat, T.; Withers, S.G.; Kongsaeree, P.T. Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides. Carbohydr. Res., 2013, 373(Suppl. C), 35-41.
[72]
Thai, N.Q.; Nguyen, H.L.; Linh, H.Q.; Li, M.S. Protocol for fast screening of multi-target drug candidates: Application to Alzheimer’s disease. J. Mol. Graph. Model., 2017, 77(Suppl. C), 121-129.
[73]
Lu, J.J.; Pan, W.; Hu, Y.J.; Wang, Y.T. Multi-Target Drugs: The Trend of Drug Research and Development. PLoS One, 2012, 7(6), e40262.
[74]
Huo, X.; Liu, K. Renal organic anion transporters in drug-drug interactions and diseases. Eur. J. Pharm. Sci., 2018, 112(Suppl. C), 8-19.
[75]
Htwe, T.H.; Khardori, N.M. Legionnaire’s Disease and Immunosuppressive Drugs. Infect. Dis. Clin. North Am., 2017, 31(1), 29-42.
[76]
Brinkman, A.K. Management of Type 1 Diabetes. Nurs. Clin. North Am., 2017, 52(4), 499-511.
[77]
Holman, R.R.; Sourij, H.; Califf, R.M. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet, 2017, 383(9933), 2008-2017.
[78]
Mbue, N.D.; Mbue, J.E.; Anderson, J.A. Management of Lipids in Patients with Diabetes. Nurs. Clin. North Am., 2017, 52(4), 605-619.
[79]
Thrasher, J. Pharmacologic management of Type 2 diabetes mellitus: Available Therapies. Am. J. Med., 2017, 130(6)(Suppl.), S4-S17.
[80]
Upadhyay, J.; Polyzos, S.A.; Perakakis, N.; Thakkar, B.; Paschou, S.A.; Katsiki, N.; Underwood, P.; Park, K.H.; Seufert, J.; Kang, E.S.; Sternthal, E.; Karagiannis, A.; Mantzoros, C.S. Pharmacotherapy of type 2 diabetes: An update. Metabolism, 2018, 78(Suppl. C), 13-42.
[81]
Panter, K.E. Chapter 64 - Cyanogenic Glycoside–Containing Plants A2 - Gupta, Ramesh C. In: Veterinary Toxicology (Third Edition), Academic Press: 2018; pp. 935-940.
[82]
Lam, K.K.; Lau, F.L. An incident of hydrogen cyanide poisoning. Am. J. Emerg. Med., 2000, 18(2), 172-175.
[83]
Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur. Food Chem., 2016, 203, 483-490.
[84]
Ballhorn, D.J. Chapter 14 - Cyanogenic Glycosides in Nuts and Seeds A2 - Preedy, Victor R. In:Nuts and Seeds in Health and Disease Prevention; Watson, R.R.; Patel, V.B., Eds.; Academic Press: San Diego, 2011, pp. 129-136.
[85]
Johansen, H.; Rasmussen, L.H.; Olsen, C.E.; Bruun Hansen, H.C. Rate of hydrolysis and degradation of the cyanogenic glycoside – dhurrin - in soil. Chemosphere, 2007, 67(2), 259-266.
[86]
Kaita, Y.; Tarui, T.; Shoji, T.; Miyauchi, H.; Yamaguchi, Y. Cyanide poisoning is a possible cause of cardiac arrest among fire victims, and empiric antidote treatment may improve outcomes. The Am. J. Emerg. Med., 2018, 36(5), 851-853.
[87]
Appendino, G.; Pollastro, F. Plants: Revamping the oldest source of medicines with modern science. In:Natural Product Chemistry for Drug Discovery; The Royal Society of Chemistry, 2009, pp. 140-173.
[88]
David, B.; Wolfender, J.L.; Dias, D.A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev., 2014, 14(2), 299-315.
[89]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy