[1]
Ramadan, N.; Ghazale, H.; El-Sayyad, M.; El-Haress, M.; Kobeissy, F.H. Neuroproteomics studies: Challenges and updates. Neuroproteomics: Methods Protocols, 2017, 1598, 3-19.
[2]
Shinde, N.C.; Chitlange, N.R.; Tate, A.B.; Gomase, V.S. Neuroproteomics: A novel field overcoming neurological disorders. Bioinfo. J. Proteomics, 2011, 1(1), 1-5.
[3]
Burchmore, R. Neuroproteomics. Expert Rev. Proteomics, 2010, 7(3), 331-332.
[4]
Li, M.D. Neuroproteomics and its applications in research on nicotine and other drugs of abuse.. In tobacco smoking addiction: Epidemiology,genetics, mechanisms, and treatment, Springer: ; , 2018, pp. 215-242.
[5]
Alzate, O. Neuroproteomics. 1st Ed. Frontiers of neuroscience series. CRC Press, Boca Raton (FL) , 2009; p. 345.
[6]
Bayés, A.; Grant, S.G. Neuroproteomics: Understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci., 2009, 10(9), 635-646.
[7]
Shoemaker, L.D.; Achrol, A.S.; Sethu, P.; Steinberg, G.K.; Chang, S.D. Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. Neurosurgery, 2011, 70(3), 518-525.
[8]
Kobeissy, F.; Mouhieddine, T.H.; Nokkari, A.; Itani, M.; Mouhieddine, M.; Zhang, Z.; Zhu, R.; Gold, M.S.; Wang, K.K.; Mechref, Y. Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, methamphetamine and MDMA. Transl. Proteom., 2014, 3, 38-52.
[9]
Ortega, M.; Calva-Nieves, J.; Zamora, A.; Gelman, P.; Palma, B. Addictions, genomics and proteomics. Salud Ment., 2012, 35, 129-137.
[10]
Butterfield, D.A.; Boyd‐Kimball, D.; Castegna, A. Proteomics in Alzheimer’s disease: Insights into potential mechanisms of neurodegeneration. J. Neurochem., 2003, 86(6), 1313-1327.
[11]
Devic, I.; Hwang, H.; Edgar, J.S.; Izutsu, K.; Presland, R.; Pan, C.; Goodlett, D.R.; Wang, Y.; Armaly, J.; Tumas, V. Salivary α-synuclein and DJ-1: Potential biomarkers for Parkinson’s disease. Brain, 2011, 134(7), e178.
[12]
Srivastava, G.; Singh, K.; Tiwari, M.N.; Singh, M.P. Proteomics in Parkinson’s disease: Current trends, translational snags and future possibilities. Expert Rev. Proteomics, 2010, 7(1), 127-139.
[13]
Ottens, A.K.; Kobeissy, F.H.; Golden, E.C.; Zhang, Z.; Haskins, W.E.; Chen, S.S.; Hayes, R.L.; Wang, K.K.; Denslow, N.D. Neuroproteomics in neurotrauma. Mass Spectrom. Rev., 2006, 25(3), 380-408.
[14]
Kobeissy, F.H.; Guingab-Cagmat, J.D.; Zhang, Z.; Moghieb, A.; Glushakova, O.Y.; Mondello, S.; Boutté, A.M.; Anagli, J.; Rubenstein, R.; Bahmad, H. Neuroproteomics and systems biology approach to identify temporal biomarker changes post experimental traumatic brain injury in rats. Front. Neurol., 2016, 7, 198.
[15]
Andrade, E.C.; Krueger, D.D.; Nairn, A.C. Recent advances in neuroproteomics. Curr. Opin. Mol. Ther., 2007, 9(3), 270.
[16]
Bell, R.L.; Rodd, Z.A.; Lumeng, L.; Murphy, J.M.; McBride, W.J. The alcohol‐preferring P rat and animal models of excessive alcohol drinking. Addict. Biol., 2006, 11(3‐4), 270-288.
[17]
Zhu, R.; Yang, T.; Kobeissy, F.; Mouhieddine, T.H.; Raad, M.; Nokkari, A.; Gold, M.S.; Wang, K.K.; Mechref, Y. The effect of chronic methamphetamine exposure on the hippocampal and olfactory bulb neuroproteomes of rats. PLoS One, 2016, 11(4), e0151034.
[18]
Miller, N.; Greene, K.; Dydinski, A.; Gerlai, R. Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav. Brain Res., 2013, 240, 192-196.
[19]
Mathur, P.; Guo, S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol. Dis., 2010, 40(1), 66-72.
[20]
Henry, P.K.; Murnane, K.S.; Votaw, J.R.; Howell, L.L. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav., 2010, 4(3), 212-219.
[21]
Wang, J.; Yuan, W.; Li, M.D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol., 2011, 44(3), 269-286.
[22]
Li, M.D.; Wang, J. Neuroproteomics and its applications in research on nicotine and other drugs of abuse. Proteomics Clin. Appl., 2007, 1(11), 1406-1427.
[23]
Santa, C.; Anjo, S.I.; Mendes, V.M.; Manadas, B. Neuroproteomics-LC-MS quantitative approaches.In Recent advances in proteomics research; InTech, November 11 2015.
[24]
Lull, M.E.; Freeman, W.M.; VanGuilder, H.D.; Vrana, K.E. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend., 2010, 107(1), 11-22.
[25]
Picciotto, M.R.; Mineur, Y.S. Molecules and circuits involved in nicotine addiction: The many faces of smoking. Neuropharmacology, 2014, 76, 545-553.
[26]
Mulcahy, M.J.; Wang, J.H.; Lester, H.A. Region specific proteomic analysis of murine brain after chronic nicotine or menthol.FASEB J., 2017, 31(S1), 991-1.
[27]
Spanagel, R.; Bartsch, D.; Brors, B.; Dahmen, N.; Deussing, J.; Eils, R.; Ende, G.; Gallinat, J.; Gebicke-Haerter, P.; Heinz, A. An integrated genome research network for studying the genetics of alcohol addiction. Addict. Biol., 2010, 15(4), 369-379.
[28]
Bell, R.L.; Rodd, Z.A.; Lumeng, L.; Murphy, J.M.; McBride, W.J. The alcohol‐preferring P rat and animal models of excessive alcohol drinking. Addict. Biol., 2006, 11(3-4), 270-288.
[29]
Hu, S.; Ide, J.S.; Chao, H.H.; Zhornitsky, S.; Fischer, K.A.; Wang, W.; Zhang, S.; Chiang-shan, R.L. Resting state functional connectivity of the amygdala and problem drinking in non-dependent alcohol drinkers. Drug Alcohol Depend., 2018, 185, 173-180.
[30]
Liu, L-W.; Lu, J.; Wang, X-H.; Fu, S-K.; Li, Q.; Lin, F-Q. Neuronal apoptosis in morphine addiction and its molecular mechanism. Int. J. Clin. Exp. Med., 2013, 6(7), 540-545.
[31]
Chen, S.L.; Tao, P.L.; Chu, C.H.; Chen, S.H.; Wu, H.E.; Tseng, L.F.; Hong, J.S.; Lu, R.B. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats. J. Neuroimmune Pharmacol., 2012, 7(2), 444-453.
[32]
Volkow, N.; Benveniste, H.; McLellan, A.T. Use and misuse of opioids in chronic pain. Annu. Rev. Med., 2018, 69, 451-465.
[33]
Velazquez-Sanchez, C.; Ferragud, A.; Renau-Piqueras, J.; Canales, J.J. Therapeutic-like properties of a dopamine uptake inhibitor in animal models of amphetamine addiction. Int. J. Neuropsychopharmacol., 2011, 14(5), 655-665.
[34]
Kobeissy, F.H.; Mitzelfelt, J.D.; Fishman, I.; Morgan, D.; Gaskins, R.; Zhang, Z.; Gold, M.S.; Wang, K.K. Methods in drug abuse models: Comparison of different models of methamphetamine paradigms. Psychiat. Disord.: Methods Protocols, 2012, 829, 269-278.
[35]
Bodzon-Kulakowska, A.; Paruch, M.; Drabik, A.; Suder, P. From proteomic studies to molecular pathways-proteins involved in response to methamphetamine administration. Curr. Proteomics, 2017, 14(4), 277-286.
[36]
Shorter, D.; Kosten, T.R. Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med., 2011, 9(1), 119.
[37]
Cao, L.; Glazyrin, A.; Kumar, S.; Kumar, A. Role of autophagy in HIV pathogenesis and drug abuse. Mol. Neurobiol., 2017, 54(8), 5855-5867.
[38]
Dunn, M.J. Gel electrophoresis of proteins, 1st ed; Elsevier: Amsterdam, 2014, p. 422.
[40]
Boodhun, N. Protein analysis: Key to the future. Biotechniques, 2018, 64(5), 197-201.
[41]
Wang, B.; Hom, G.; Zhou, S.; Guo, M.; Li, B.; Yang, J.; Monnier, V.M.; Fan, X. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell, 2017, 16(2), 244-261.
[42]
Trim, P.J. Rodent whole-body sectioning and MALDI mass spectrometry imaging. Methods Mol. Biol., 2017, 1618, 175-189.
[43]
Zhang, L.; Elias, J.E. Relative protein quantification using tandem mass tag mass spectrometry.In Proteomics; Springer, Humana Press: NY, 2017, pp. 185-198.
[44]
Craft, G.E.; Chen, A.; Nairn, A.C. Recent advances in quantitative neuroproteomics. Methods, 2013, 61(3), 186-218.
[45]
Eggers, L.F.; Schwudke, D. Shotgun lipidomics approach for clinical samples.In Clinical Metabolomics; Springer, 2018, pp. 163-174.
[46]
Abul-Husn, N.S.; Devi, L.A. Neuroproteomics of the synapse and drug addiction. J. Pharmacol. Exp. Ther., 2006, 318(2), 461-468.
[47]
Colucci-D’Amato, L.; Farina, A.; Vissers, J.P.; Chambery, A. Quantitative neuroproteomics: Classical and novel tools for studying neural differentiation and function. Stem Cell Rev. Rep., 2011, 7(1), 77-93.
[48]
Garbis, S.; Lubec, G.; Fountoulakis, M. Limitations of current proteomics technologies. J. Chromatogr. A, 2005, 1077(1), 1-18.
[49]
Williams, K.; Wu, T.; Colangelo, C.; Nairn, A.C. Recent advances in neuroproteomics and potential application to studies of drug addiction. Neuropharmacology, 2004, 47, 148-166.
[50]
Shevchenko, G.; Konzer, A.; Musunuri, S.; Bergquist, J. Neuroproteomics tools in clinical practice. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(7), 705-717.
[51]
Katare, D.P.; Malik, H.; Abdin, M. Neuroproteomics: Advancement and challenges for biomarker discovery in neurodegenerative diseases. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 14.
[52]
Lozupone, M.; Seripa, D.; Stella, E.; La Montagna, M.; Solfrizzi, V.; Quaranta, N.; Veneziani, F.; Cester, A.; Sardone, R.; Bonfiglio, C. Innovative biomarkers in psychiatric disorders: A major clinical challenge in psychiatry. Expert Rev. Proteomics, 2017, 14(9), 809-824.
[53]
Twiss, J.L.; Fainzilber, M. Neuroproteomics: How many angels can be identified in an extract from the head of a pin? Mol. Cell. Proteomics, 2016, 15(2), 341-343.
[54]
Häggmark, A.; Schwenk, J.M.; Nilsson, P. Neuroproteomic profiling of human body fluids. Proteomics Clin. Appl., 2016, 10(4), 485-502.
[55]
Alaaeddine, R.; Fayad, M.; Nehme, E.; Bahmad, H.F.; Kobeissy, F. The emerging role of proteomics in precision medicine: Applications in neurodegenerative diseases and neurotrauma.In Personalised Medicine; Springer: Cham, 2017, pp. 59-70.
[56]
Liu, Y.; Qing, H.; Deng, Y. Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int. J. Mol. Sci., 2014, 15(5), 7865-7882.
[57]
Dayon, L.; Hainard, A.; Licker, V.; Turck, N.; Kuhn, K.; Hochstrasser, D.F.; Burkhard, P.R.; Sanchez, J.C. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem., 2008, 80(8), 2921-2931.
[58]
Micheva, K.D.; Bruchez, M.P. The gain in brain: Novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure. Curr. Opin. Neurobiol., 2012, 22(1), 94-100.
[59]
Drabik, A.; Bierczynska‐Krzysik, A.; Bodzon‐Kulakowska, A.; Suder, P.; Kotlinska, J.; Silberring, J. Proteomics in neurosciences. Mass Spectrom. Rev., 2007, 26(3), 432-450.
[60]
Hanrieder, J.; Malmberg, P.; Ewing, A.G. Spatial neuroproteomics using imaging mass spectrometry. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(7), 718-731.
[61]
Kitchen, R.R.; Rozowsky, J.S.; Gerstein, M.B.; Nairn, A.C. Decoding neuroproteomics: Integrating the genome, translatome and functional anatomy. Nat. Neurosci., 2014, 17(11), 1491-1499.
[62]
Szoko, N.; McShane, A.J.; Natowicz, M.R. Proteomic explorations of autism spectrum disorder. Autism Res., 2017, 10(9), 1460-1469.
[63]
Lubec, G. Advances in neuroproteomics. Proteomics Clin. Appl., 2007, 1(11), 1339-1341.
[64]
Szoko, N.; McShane, A.J.; Natowicz, M.R. Proteomic explorations of autism spectrum disorder. Autism Res., 2017, 10(9), 1460-1469.
[65]
Brunner, A.M.; Tweedie-Cullen, R.Y.; Mansuy, I.M. Epigenetic modifications of the neuroproteome. Proteomics, 2012, 12(15-16), 2404-2420.
[66]
English, J.A.; Pennington, K.; Dunn, M.J.; Cotter, D.R. The neuroproteomics of schizophrenia. Biol. Psychiatry, 2011, 69(2), 163-172.
[67]
Hampel, H.; Vergallo, A.; Bonuccelli, U.; Lista, S.; Initiative, A.P.M. Turning point towards blood biomarker-guided targeted therapy for precision medicine in Alzheimer’s disease. J. Prev. Alzheimers Dis., 2018, 5(3), 160-164.
[68]
Reig-Viader, R.; Bayés, À. Quantitative in-depth profiling of the postsynaptic density proteome to understand the molecular mechanisms governing synaptic physiology and pathology; Curr. Proteomic Approaches Appl. Brain Funct, 2017, pp. 255-280.