[9]
C. Blum, and A. Roli, "Metaheuristics in combinatorial optimization: Overview and conceptual comparison", ACM Comput. Surv., vol. 35, no. 3, pp. 268-308, 2003.
[11]
J. Holland, Adaptation in natural and artificial systems: An introductory analysis with application to biology, control and artificial intelligence., MIT Press, 1992.
[12]
J. Kennedy, and R. Eberhart, "Particle swarm optimization", In: Proceedings of IEEE International Conference on Neural Networks IV.Perth, WA, Australia 1995, pp. 1942-1948, Vol. 4.
[13]
Z.W. Geem, J.H. Kim, and G.V. Loganathan, "A new heuristic optimization algorithm: Harmony search", Simulation, vol. 76, no. 2, pp. 60-68, 2001.
[14]
X.S. Yang, and S. Deb, "Cuckoo search via lévy flights", In: IEEE World Congress on Nature and Biologically Inspired Computing.Coimbatore, India 2009, pp. 210-214.
[15]
M. Khari, and P. Kumar, "An effective meta-heuristic cuckoo search algorithm for test suite optimization", Informatica, vol. 41, no. 3, pp. 363-377, 2017.
[16]
S. He, Q.H. Wu, and J. Saunders, "Group search optimizer: An optimization algorithm inspired by animal searching behavior", InIEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 973-990, 2009.
[17]
X.S. Yang, "A new metaheuristic bat-inspired algorithm In Nature Inspired Cooperative Strategies for Optimization, Berlin, Germany,", 2010, pp. 65-74.
[18]
X.S. Yang, "Firefly algorithm, stochastic test functions and design optimisation", Int. J. Bio-inspired Comput., vol. 2, no. 2, pp. 78-84, 2010.
[19]
L. Guo, Z. He, S. Zhao, N. Zhang, J. Wang, and C. Jiang, "Multi-objective optimization for data placement strategy in cloud computing", In: International Conference on Information Computing and Applications.Chengde, China 2012, pp. 119-126
[20]
J. Myint, and T.T. Naing, "A data placement algorithm with binary weighted tree on PC cluster based cloud storage system", In: IEEE International Conference on Cloud and Service Computing. Hong Kong, 2011, pp. 315-320
[23]
D. Yuan, Y. Yang, X. Liu, and J. Chen, "A data placement strategy in scientific cloud workflows, future generation", Comput. Syst., vol. 26, no. 8, pp. 1200-1214, 2010.
[24]
Z. Er-Dun, Q. Yong-Qiang, X. Xing-Xing, and C. Yi, "A data placement strategy based on genetic algorithm for scientific workflows", In: Eighth International Conference on Computational Intelligence and Security (CIS).Guangzhou, China 2012, pp. 146- 149.
[25]
W. Guo, and X. Wang, "A data placement strategy based on genetic algorithm in cloud computing platform", In: 10th Web Information System and Application Conference.Yangzhou, China 2013, pp. 369-372.
[26]
T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms., Oxford University Press, 1996.
[27]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multi objective genetic algorithm: Nsgaii", IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, 2002.
[28]
M. Mitchell, An Introduction to Genetic Algorithms., MIT Press, 1998.
[30]
L. Guo, S. Zhao, S. Shen, and C. Jiang, "Task scheduling optimization in cloud computing based on heuristic algorithm", J. Netw., vol. 7, no. 3, pp. 547-553, 2012.
[32]
S. Pandey, L. Wu, S.M. Guru, and R. Buyya, "A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments", In: 24th IEEE International Conference on Advanced Information Networking and Applications.Perth, WA, Australia 2010, pp. 400-407.
[33]
Q. Zhao, C. Xiong, and P. Wang, "Heuristic data placement for data-intensive applications in heterogeneous cloud", J. Electr. Comput. Eng., vol. 13, pp. 1-8, 2016.
[35]
https://en.wikipedia.org/wiki/Corvus [Accessed on: Nov 02, 2018]
[36]
A.D. Craig, "How do you feel-now? The anterior insula and human awareness", Nat. Rev. Neurosci., vol. 10, no. 1, pp. 59-70, 2009.
[37]
D.C. Penn, and D.J. Povinelli, "On the lack of evidence that non-human animals possess anything remotely resembling a ‘Theory of mind’", Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 362, no. 1480, pp. 731-744, 2007.
[39]
Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, "An Algorithm in SwinDeW-C for Scheduling Transaction-Intensive Cost-Constrained cloud workflows", In: IEEE Fourth International Conference on eScience.Indianapolis, IN, USA 2008, pp. 374-375.
[40]
A. Askarzadeh, "A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm", Comput. Struc., vol. 169, pp. 1-2, 2016.