Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Removal of Pharmaceutical Contaminants in Wastewater Using Nanomaterials: A Comprehensive Review

Author(s): Anjali Chauhan, Devendra Sillu and Shekhar Agnihotri*

Volume 20, Issue 6, 2019

Page: [483 - 505] Pages: 23

DOI: 10.2174/1389200220666181127104812

Price: $65

Abstract

Background: The limitless presence of pharmaceutical contaminants in discharged wastewater has emerged as a threat to aquatic species and humans. Their presence in drinking water has although raised substantial concerns, very little is known about the fate and ecological impacts of these pollutants. As a result, these pollutants are inevitably introduced to our food chain at trace concentrations. Unfortunately, the conventional wastewater treatment techniques are unable to treat pharmaceuticals completely with practical limitations. The focus has now been shifted towards nanotechnology for the successful remediation of these persistent pollutants. Thus, the current review specifically focuses on providing readers brief yet sharp insights into applications of various nanomaterials for the removal of pharmaceutical contaminants.

Methods: An exhaustive collection of bibliographic database was done with articles having high impact and citations in relevant research domains. An in-depth analysis of screened papers was done through standard tools. Studies were categorized according to the use of nanoscale materials as nano-adsorbents (graphene, carbon nanotubes), nanophotocatalysts (metal, metal oxide), nano-filtration, and ozonation for promising alternative technologies for the efficient removal of recalcitrant contaminants.

Results: A total of 365 research articles were selected. The contemporary advancements in the field of nanomaterials for drinking and wastewater treatment have been thoroughly analyzed along with their future perspectives.

Conclusion: The recommendations provided in this article will be useful to adopt novel strategies for on-site removal of the emerging contaminants in pharmaceutical effluents and related industries.

Keywords: Emerging pollutants, photocatalysis, nano adsorbents, immobilization, nanocomposites, carbon nanotubes, graphene.

Graphical Abstract

[1]
Cai, Z.Q.; Dwivedi, A.D.; Lee, W.N.; Zhao, X.; Liu, W.; Sillanpaa, M.; Zhao, D.Y.; Huang, C.H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environ. Sci. Nano, 2018, 5(1), 27-47.
[2]
Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res., 2018, 142, 26-45.
[3]
Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis., 2014, 14(8), 742-750.
[4]
Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol., 2006, 76(2), 122-159.
[5]
Jones, O.A.H.; Voulvoulis, N.; Lester, J. Human pharmaceuticals in wastewater treatment processes. Crit. Rev. Environ. Sci. Technol., 2005, 35(4), 401-427.
[6]
Kümmerer, K. Antibiotics in the aquatic environment-a review-part I. Chemosphere, 2009, 75(4), 417-434.
[7]
Yang, Y.; Ok, Y.S.; Kim, K-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of Pharmaceuticals And Personal Care Products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ., 2017, 596, 303-320.
[8]
Pomati, F.; Castiglioni, S.; Zuccato, E.; Fanelli, R.; Vigetti, D.; Rossetti, C.; Calamari, D. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ. Sci. Technol., 2006, 40(7), 2442-2447.
[9]
Chopra, I.; Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[10]
Kim, S.; Aga, D.S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health B, 2007, 10(8), 559-573.
[11]
Lee, D-H. Evidence of the possible harm of endocrine-disrupting chemicals in humans: Ongoing debates and key issues. Endocrinol. Metab., 2018, 33(1), 44-52.
[12]
Madikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J. Environ. Manage., 2017, 193, 211-220.
[13]
Carmona, E.; Andreu, V.; Picó, Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Sci. Total Environ., 2014, 484, 53-63.
[14]
Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustain. Cities Soc., 2016, 27, 407-418.
[15]
Jelić, A.; Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. YangOccurrence and elimination of pharmaceuticals during conventional wastewater treatment.In: Emerging and Priority Pollutants in Rivers; Helena, G.; Antoni, G.; Anita, G., Eds.; Springer-Verlag: Berlin, Heidelberg, 2012, pp. 1-23.
[16]
Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ., 2013, 454-455, 442-456.
[17]
Tijani, J.O.; Fatoba, O.O.; Babajide, O.O.; Petrik, L.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environ. Chem. Lett., 2016, 14(1), 27-49.
[18]
Lunenfeld, B.; Stratton, P. The clinical consequences of an ageing world and preventive strategies. Best Pract. Res. Clin. Obstet. Gynaecol., 2013, 27(5), 643-659.
[19]
Bergman, Å.; Heindel, J.J.; Kasten, T.; Kidd, K.A.; Jobling, S.; Neira, M.; Zoeller, R.T.; Becher, G.; Bjerregaard, P.; Bornman, R. The impact of endocrine disruption: A consensus statement on the state of the science. Environ. Health Perspect., 2013, 121(4), a104.
[20]
Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol., 2008, 43(3), 597-603.
[21]
Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng., 2006, 28(6), 353-414.
[22]
Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf., 2017, 137, 113-120.
[23]
Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Alemán, R.M.; Aceña, J.; Barceló, D.; De Alda, M.L. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ., 2018, 613, 1263-1274.
[24]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater., 2017, 323, 274-298.
[25]
Esplugas, S.; Bila, D.M.; Krause, L.G.T.; Dezotti, M. Ozonation and advanced oxidation technologies to remove Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in water effluents. J. Hazard. Mater., 2007, 149(3), 631-642.
[26]
Tijani, J.O.; Fatoba, O.O.; Petrik, L.F. A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections. Water, Air, Soil Pollut., 2013, 224(11), Awfa1770-1773.
[27]
Baquero, F.; Martínez, J-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol., 2008, 19(3), 260-265.
[28]
Oetken, M.; Nentwig, G.; Löffler, D.; Ternes, T.; Oehlmann, J. Effects of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Arch. Environ. Contam. Toxicol., 2005, 49(3), 353-361.
[29]
Flaherty, C.M.; Dodson, S.I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 2005, 61(2), 200-207.
[30]
Khan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environ. Sci. Pollut. Res., 2017, 24(9), 7938-7958.
[31]
Nakada, N.; Tanishima, T.; Shinohara, H.; Kiri, K.; Takada, H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res., 2006, 40(17), 3297-3303.
[32]
Clara, M.; Kreuzinger, N.; Strenn, B.; Gans, O.; Kroiss, H. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res., 2005, 39(1), 97-106.
[33]
Joss, A.; Siegrist, H.; Ternes, T. Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Sci. Technol., 2008, 57(2), 251-255.
[34]
Ternes, T.A.; Meisenheimer, M.; McDowell, D.; Sacher, F.; Brauch, H-J.; Haist-Gulde, B.; Preuss, G.; Wilme, U.; Zulei-Seibert, N. Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol., 2002, 36(17), 3855-3863.
[35]
Huber, M.M. GÖbel, A.; Joss, A.; Hermann, N.; LÖffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environ. Sci. Technol., 2005, 39(11), 4290-4299.
[36]
Lüddeke, F.; Heß, S.; Gallert, C.; Winter, J.; Güde, H.; Löffler, H. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Res., 2015, 69, 243-251.
[37]
Giebner, S.; Ostermann, S.; Straskraba, S.; Oetken, M.; Oehlmann, J.; Wagner, M. Effectivity of advanced wastewater treatment: Reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity. Environ. Sci. Pollut. Res., 2018, 25(5), 3965-3976.
[38]
Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res.-. Rev. Mutat., 2007, 636(1), 178-242.
[39]
Yang, L.; Hu, C.; Nie, Y.; Qu, J. Surface acidity and reactivity of β-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: In situ ATR-FTIR studies. Appl. Catal. B, 2010, 97(3-4), 340-346.
[40]
Bollmann, A.F.; Seitz, W.; Prasse, C.; Lucke, T.; Schulz, W.; Ternes, T. Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J. Hazard. Mater., 2016, 320, 204-215.
[41]
Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Khaled, W.; Salvadó, V.; Monclús, H. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf. Environ., 2018, 118, 1-9.
[42]
Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev., 2018, 356, 147-164.
[43]
Savage, N.; Diallo, M.S. Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res., 2005, 7(4-5), 331-342.
[44]
Matsuoka, M.; Toyao, T.; Horiuchi, Y.; Takeuchi, M.; Anpo, M. Wastewater treatment using highly functional immobilized TiO2 thin‐film photocatalysts.In:Photocatalysis and water purification: From fundamentals to recent applications; Pichat, P., Ed.; John Wiley & Sons: Hoboken, New Jersey, 2013, pp. 179-197.
[45]
Madhavan, J.; Grieser, F.; Ashokkumar, M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater., 2010, 178(1-3), 202-208.
[46]
Mohammadi, A.; Kazemipour, M.; Ranjbar, H.; Walker, R.B.; Ansari, M. Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostruct., 2015, 23(2), 165-169.
[47]
Wen, S.; Chen, L.; Li, W.; Ren, H.; Li, K.; Wu, B.; Hu, H.; Xu, K. Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation. Sci. Rep., 2018, 8(1), 9581.
[48]
Huang, D.; Wang, X.; Zhang, C.; Zeng, G.; Peng, Z.; Zhou, J.; Cheng, M.; Wang, R.; Hu, Z.; Qin, X. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. Chemosphere, 2017, 186, 414-421.
[49]
Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron., 2018, 29(3), 1719-1747.
[50]
Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J., 2011, 170(2-3), 395-410.
[51]
Ji, L.; Shao, Y.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environ. Sci. Technol., 2010, 44(16), 6429-6436.
[52]
Putra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res., 2009, 43(9), 2419-2430.
[53]
Al-Khateeb, L.A.; Almotiry, S.; Salam, M.A. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J., 2014, 248, 191-199.
[54]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 2013, 5(16), 7328-7340.
[55]
Álvarez-Torrellas, S.; Peres, J.; Gil-Álvarez, V.; Ovejero, G.; García, J. Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem. Eng. J., 2017, 320, 319-329.
[56]
Patiño, Y.; Díaz, E.; Ordóñez, S. Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere, 2015, 119, S124-S130.
[57]
Wang, F.; Ma, S.; Si, Y.; Dong, L.; Wang, X.; Yao, J.; Chen, H.; Yi, Z.; Yao, W.; Xing, B. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon, 2017, 114, 671-678.
[58]
Song, J.Y.; Bhadra, B.N.; Jhung, S.H. Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous Mesoporous Mater., 2017, 243, 221-228.
[59]
Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon, 2015, 91, 122-143.
[60]
Yu, J-G.; Zhao, X-H.; Yang, H.; Chen, X-H.; Yang, Q.; Yu, L-Y.; Jiang, J-H.; Chen, X-Q. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ., 2014, 482, 241-251.
[61]
Carmalin Sophia, A.; Lima, E.C.; Allaudeen, N.; Rajan, S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater-a review. Desalination Water Treat., 2016, 57(57), 27573-27586.
[62]
Liu, F-f.; Zhao, J.; Wang, S.; Du, P.; Xing, B. Effects of solution chemistry on adsorption of selected Pharmaceuticals and Personal Care Products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol., 2014, 48(22), 13197-13206.
[63]
Jung, C.; Park, J.; Lim, K.H.; Park, S.; Heo, J.; Her, N.; Oh, J.; Yun, S.; Yoon, Y. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard. Mater., 2013, 263, 702-710.
[64]
Prauchner, M.J.; Sapag, K.; Rodríguez-Reinoso, F. Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon, 2016, 110, 138-147.
[65]
Thue, P.S.; Lima, E.C.; Sieliechi, J.M.; Saucier, C.; Dias, S.L.; Vaghetti, J.C.; Rodembusch, F.S.; Pavan, F.A. Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J. Colloid Interface Sci., 2017, 486, 163-175.
[66]
Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.; Bandoch, G.F.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J., 2015, 260, 291-299.
[67]
Ahmed, M.; Islam, M.A.; Asif, M.; Hameed, B. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. Bioresour. Technol., 2017, 243, 778-784.
[68]
Pouretedal, H.; Sadegh, N. Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng., 2014, 1, 64-73.
[69]
de Franco, M.A.E.; De Carvalho, C.B.; Bonetto, M.M.; De Pelegrini Soares, R.; Féris, L.A. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J. Clean. Prod., 2017, 161, 947-956.
[70]
Nazari, G.; Abolghasemi, H.; Esmaieli, M.; Pouya, E.S. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study. Appl. Surf. Sci., 2016, 375, 144-153.
[71]
Nazari, G.; Abolghasemi, H.; Esmaieli, M. Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon. J. Taiwan Inst. Chem. Eng., 2016, 58, 357-365.
[72]
Moral-Rodríguez, A.; Leyva-Ramos, R.; Ocampo-Pérez, R.; Mendoza-Barron, J.; Serratos-Alvarez, I.; Salazar-Rabago, J. Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: Equilibrium and intraparticle diffusion mechanisms. Adsorption, 2016, 22(1), 89-103.
[73]
Fu, H.; Li, X.; Wang, J.; Lin, P.; Chen, C.; Zhang, X.; Suffet, I.M. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci., 2017, 56, 145-152.
[74]
Liu, Y.; Liu, X.; Dong, W.; Zhang, L.; Kong, Q.; Wang, W. Efficient adsorption of sulfamethazine onto modified activated carbon: A plausible adsorption mechanism. Sci. Rep., 2017, 7(1), 12437.
[75]
Wang, S.; Li, X.; Zhao, H.; Quan, X.; Chen, S.; Yu, H. Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes. Water Res., 2018, 134, 162-169.
[76]
Sharma, P.K.; Wankat, P.C. Solvent recovery by steamless temperature swing carbon adsorption processes. Ind. Eng. Chem. Res., 2010, 49(22), 11602-11613.
[77]
Zhang, Y.; Zuo, S.; Zhou, M.; Liang, L.; Ren, G. Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption. Chem. Eng. J., 2018, 335, 685-692.
[78]
Teixeira, S.; Delerue-Matos, C.; Santos, L. Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon. Sci. Total Environ., 2019, 646, 168-176.
[79]
Klinar, D. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment. Bioresour. Technol., 2016, 206, 112-120.
[80]
Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of Sulfamethoxazole (SMX) and Sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res., 2017, 25(26), 25659-25667.
[81]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ., 2015, 532, 112-126.
[82]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol., 2016, 214, 836-851.
[83]
Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Belhaj, D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour. Technol., 2017, 238, 306-312.
[84]
Jia, M.; Wang, F.; Bian, Y.; Jin, X.; Song, Y.; Kengara, F.O.; Xu, R.; Jiang, X. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresour. Technol., 2013, 136, 87-93.
[85]
Rajapaksha, A.U.; Vithanage, M.; Ahmad, M.; Seo, D-C.; Cho, J-S.; Lee, S-E.; Lee, S.S.; Ok, Y.S. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater., 2015, 290, 43-50.
[86]
Oh, T-K.; Choi, B.; Shinogi, Y.; Chikushi, J. Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut., 2012, 223(7), 3729-3738.
[87]
Zhu, X.; Liu, Y.; Zhou, C.; Luo, G.; Zhang, S.; Chen, J. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon, 2014, 77, 627-636.
[88]
Upadhyayula, V.K.; Deng, S.; Mitchell, M.C.; Smith, G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ., 2009, 408(1), 1-13.
[89]
Apul, O.G.; Karanfil, T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Res., 2015, 68, 34-55.
[90]
Jung, C.; Son, A.; Her, N.; Zoh, K-D.; Cho, J.; Yoon, Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem., 2015, 27, 1-11.
[91]
Ji, L.; Chen, W.; Zheng, S.; Xu, Z.; Zhu, D. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 2009, 25(19), 11608-11613.
[92]
Kim, H.; Hwang, Y.S.; Sharma, V.K. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chem. Eng. J., 2014, 255, 23-27.
[93]
Yu, F.; Ma, J.; Han, S. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Sci. Rep., 2014, 4(5326), 1-8.
[94]
Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere, 2014, 95, 150-155.
[95]
Yu, F.; Sun, S.; Han, S.; Zheng, J.; Ma, J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J., 2016, 285, 588-595.
[96]
Peng, H.; Pan, B.; Wu, M.; Liu, Y.; Zhang, D.; Xing, B. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity-and structure-controlled process. J. Hazard. Mater., 2012, 233, 89-96.
[97]
Balarak, D.; Mostafapour, F.; Bazrafshan, E.; Saleh, T.A. Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci. Technol., 2017, 75(7), 1599-1606.
[98]
Yang, Q.; Chen, G.; Zhang, J.; Li, H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: Effects of aqueous solution chemistry. RSC Advances, 2015, 5(32), 25541-25549.
[99]
Zhou, Y.; He, Y.; Xiang, Y.; Meng, S.; Liu, X.; Yu, J.; Yang, J.; Zhang, J.; Qin, P.; Luo, L. Single and simultaneous adsorption of pefloxacin and Cu (II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Sci. Total Environ., 2019, 646, 29-36.
[100]
Chen, W.; Duan, L.; Wang, L.; Zhu, D. Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environ. Sci. Technol., 2008, 42(18), 6862-6868.
[101]
Ji, L.; Chen, W.; Duan, L.; Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol., 2009, 43(7), 2322-2327.
[102]
Yang, K.; Xing, B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem. Rev., 2010, 110(10), 5989-6008.
[103]
Wang, L.; Zhu, D.; Duan, L.; Chen, W. Adsorption of single-ringed N-and S-heterocyclic aromatics on carbon nanotubes. Carbon, 2010, 48(13), 3906-3915.
[104]
Ncibi, M.C.; Sillanpää, M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater., 2015, 298, 102-110.
[105]
Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci., 2012, 368(1), 540-546.
[106]
Patiño, Y.; Díaz, E.; Ordóñez, S.; Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere, 2015, 136, 174-180.
[107]
Lawal, I.A.; Lawal, M.M.; Akpotu, S.O.; Azeez, M.A.; Ndungu, P.; Moodley, B. Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs. Ecotoxicol. Environ. Saf., 2018, 161, 542-552.
[108]
Yu, X.; Zhang, L.; Liang, M.; Sun, W. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem. Eng. J., 2015, 279, 363-371.
[109]
Agnihotri, S.; Dhiman, N.K. Development of nano-antimicrobial biomaterials for biomedical applications. In: Advances in Biomaterials for Biomedical Applications; Tripathi, A.; Melo, J.S., Eds.; Springer: Singapore, 2017, pp. 479-545.
[110]
Agnihotri, S.; Dhiman, N.K.; Tripathi, A. Antimicrobial surface modification of polymeric biomaterials. In: Handbook of Antimicrobial Coatings; Tiwari, A., Ed.; Elsevier: Armsterdam, Netherlands, 2018, pp. 435-486.
[111]
Mukherji, S.; Ruparelia, J.; Agnihotri, S. Antimicrobial activity of silver and copper nanoparticles: Variation in sensitivity across various strains of bacteria and fungi. In: Nano-Antimicrobials: Progress and Prospects; Cioffi, N.; Rai, M., Eds.; Springer-Verlag Berlin Heidelberg, 2012, pp. 225-251.
[112]
Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale, 2015, 7(16), 7415-7429.
[113]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci., 2012, 2(3), 179-188.
[114]
Bharti, S.; Agnihotri, S.; Mukherji, S.; Mukherji, S. Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria. J. Environ. Res. Dev., 2015, 9(3A), 849-856.
[115]
Chakraborty, D.; Sharma, V.; Agnihotri, S.; Mukherji, S.; Mukherji, S. Disinfection of water in a batch reactor using chloridized silver surfaces. J. Water Process Eng., 2017, 16, 41-49.
[116]
Fazelirad, H.; Ranjbar, M.; Taher, M.A.; Sargazi, G. Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J. Ind. Eng. Chem., 2015, 21, 889-892.
[117]
Wang, Y.; Zhu, J.; Huang, H.; Cho, H-H. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: Capabilities and potential mechanisms. J. Membr. Sci., 2015, 479, 165-174.
[118]
Wang, Y.; Huang, H.; Wei, X. Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chem. Eng. J., 2018, 333, 66-75.
[119]
Shan, D.; Deng, S.; He, C.; Li, J.; Wang, H.; Jiang, C.; Yu, G.; Wiesner, M.R. Intercalation of rigid molecules between carbon nanotubes for adsorption enhancement of typical pharmaceuticals. Chem. Eng. J., 2018, 332, 102-108.
[120]
Xiong, W.; Zeng, Z.; Li, X.; Zeng, G.; Xiao, R.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Hu, L. Multi-walled carbon nanotube/amino-functionalized MIL-53 (Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere, 2018, 210, 1061-1069.
[121]
Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent. Sci. Total Environ., 2018, 627, 235-244.
[122]
Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D nanostructures for water purification: Graphene and beyond. Nanoscale, 2016, 8(33), 15115-15131.
[123]
Zhu, X.; Tsang, D.C.; Chen, F.; Li, S.; Yang, X. Ciprofloxacin adsorption on graphene and granular activated carbon: Kinetics, isotherms, and effects of solution chemistry. Environ. Technol., 2015, 36(24), 3094-3102.
[124]
Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater., 2015, 282, 201-207.
[125]
Tang, Y.; Guo, H.; Xiao, L.; Yu, S.; Gao, N.; Wang, Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf. Physicochem. Eng. Aspects, 2013, 424, 74-80.
[126]
Nam, S-W.; Jung, C.; Li, H.; Yu, M.; Flora, J.R.; Boateng, L.K.; Her, N.; Zoh, K-D.; Yoon, Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere, 2015, 136, 20-26.
[127]
Chen, H.; Gao, B.; Li, H. Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. J. Environ. Chem. Eng., 2014, 2(1), 310-315.
[128]
Luo, Y-B.; Shi, Z-G.; Gao, Q.; Feng, Y-Q. Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples. J. Chromatogr., 2011, 1218(10), 1353-1358.
[129]
Liu, F-F.; Zhao, J.; Wang, S.; Xing, B. Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environ. Pollut., 2016, 210, 85-93.
[130]
Kerkez-Kuyumcu, Ö.; Bayazit, Ş.S.; Salam, M.A. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem., 2016, 36, 198-205.
[131]
Peng, B.; Chen, L.; Que, C.; Yang, K.; Deng, F.; Deng, X.; Shi, G.; Xu, G.; Wu, M. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-π interactions. Sci. Rep., 2016, 6, 31920.
[132]
Yu, F.; Ma, J.; Bi, D. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ. Sci. Pollut. Res., 2015, 22(6), 4715-4724.
[133]
Rostamian, R.; Behnejad, H. A comparative adsorption study of sulfamethoxazole onto graphene and graphene oxide nanosheets through equilibrium, kinetic and thermodynamic modeling. Process Saf. Environ. Prot., 2016, 102, 20-29.
[134]
Sharma, D.; Sharma, J.; Arya, R.K.; Ahuja, S.; Agnihotri, S. Surfactant enhanced drying of waterbased poly(vinyl alcohol) coatings. Prog. Org. Coat., 2018, 125, 443-452.
[135]
Ma, J.; Yang, M.; Yu, F.; Zheng, J. Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep., 2015, 5, 13578.
[136]
Fei, Y.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci., 2016, 484, 196-204.
[137]
Yang, G-H.; Bao, D-D.; Zhang, D-Q.; Wang, C.; Qu, L-L.; Li, H-T. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Res. Lett., 2018, 13(1), 146.
[138]
Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Advances, 2014, 4(8), 3823-3851.
[139]
Anis, S.F.; Khalil, A.; Singaravel, G.; Hashaikeh, R. A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous Mesoporous Mater., 2016, 236, 176-192.
[140]
Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Rohani, S. Application of zeolites in aquaculture industry: A review. Rev. Aquacult., 2018, 10(1), 75-95.
[141]
Koshy, N.; Singh, D. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng., 2016, 4(2), 1460-1472.
[142]
Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous Mesoporous Mater., 2015, 214, 224-241.
[143]
Tsutsumi, K.; Takahashi, H. Study of the nature of active sites on zeolites by the measurement of heat of immersion. II. Effects of silica/alumina ratio to electrostatic-field strength of calcium-exchanged zeolites. J. Phys. Chem., 1972, 76(1), 110-115.
[144]
Burke, N.; Trimm, D.; Howe, R.F. The effect of silica: Alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control. Appl. Catal. B, 2003, 46(1), 97-104.
[145]
Jiang, N.; Shang, R.; Heijman, S.G.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res., 2018, 144, 145-161.
[146]
Rossner, A.; Snyder, S.A.; Knappe, D.R. Removal of emerging contaminants of concern by alternative adsorbents. Water Res., 2009, 43(15), 3787-3796.
[147]
Braschi, I.; Blasioli, S.; Gigli, L.; Gessa, C.E.; Alberti, A.; Martucci, A. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater., 2010, 178(1-3), 218-225.
[148]
Martucci, A.; Cremonini, M.A.; Blasioli, S.; Gigli, L.; Gatti, G.; Marchese, L.; Braschi, I. Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: A structural and spectroscopic combined study. Microporous Mesoporous Mater., 2013, 170, 274-286.
[149]
De Sousa, D.N.R.; Insa, S.; Mozeto, A.A.; Petrovic, M.; Chaves, T.F.; Fadini, P.S. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere, 2018, 205, 137-146.
[150]
Braschi, I.; Martucci, A.; Blasioli, S.; Mzini, L.L.; Ciavatta, C.; Cossi, M. Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: An interdisciplinary study. Chemosphere, 2016, 155, 444-452.
[151]
Khanday, W.; Hameed, B. Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption. Fuel, 2018, 215, 499-505.
[152]
Chao, Y.; Zhu, W.; Wu, X.; Hou, F.; Xun, S.; Wu, P.; Ji, H.; Xu, H.; Li, H. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chem. Eng. J., 2014, 243, 60-67.
[153]
Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat, T.; Wang, X. Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chem. Eng. J., 2018, 333, 343-360.
[154]
Liu, D.; Lei, W.; Qin, S.; Klika, K.D.; Chen, Y. Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. Phys. Chem. Chem. Phys., 2016, 18(1), 84-88.
[155]
Barbooti, M.; Su, H.; Punamiya, P.; Sarkar, D. Oxytetracycline sorption onto Iraqi montmorillonite. Int. J. Environ. Sci. Technol., 2014, 11(1), 69-76.
[156]
Sassman, S.A.; Lee, L.S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ. Sci. Technol., 2005, 39(19), 7452-7459.
[157]
Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol., 2014, 154, 209-214.
[158]
Brigante, M.; Parolo, M.E.; Schulz, P.C.; Avena, M. Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties. Powder Technol., 2014, 253, 178-186.
[159]
Parida, K.; Dash, S.K. Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of adamantane. J. Hazard. Mater., 2010, 179(1-3), 642-649.
[160]
Yokoi, T.; Kubota, Y.; Tatsumi, T. Amino-functionalized mesoporous silica as base catalyst and adsorbent. Appl. Catal. A, 2012, 421, 14-37.
[161]
Zhang, Z.; Lan, H.; Liu, H.; Qu, J. Removal of tetracycline antibiotics from aqueous solution by amino-Fe (III) functionalized SBA15. Colloids Surf. Physicochem. Eng. Aspects, 2015, 471, 133-138.
[162]
Sui, M.; Zhou, Y.; Sheng, L.; Duan, B. Adsorption of norfloxacin in aqueous solution by Mg-Al layered double hydroxides with variable metal composition and interlayer anions. Chem. Eng. J., 2012, 210, 451-460.
[163]
Soori, M.M.; Ghahramani, E.; Kazemian, H.; Al-Musawi, T.J.; Zarrabi, M. Intercalation of tetracycline in nano sheet layered double hydroxide: an insight into UV/VIS spectra analysis. J. Taiwan Inst. Chem. Eng., 2016, 63, 271-285.
[164]
Sepehr, M.N.; Al-Musawi, T.J.; Ghahramani, E.; Kazemian, H.; Zarrabi, M. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arab. J. Chem., 2017, 10(5), 611-623.
[165]
Li, W.; Wang, J.; He, G.; Yu, L.; Noor, N.; Sun, Y.; Zhou, X.; Hu, J.; Parkin, I.P. Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. J. Mater. Chem. A , 2017, 5(9), 4352-4358.
[166]
Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C-Photochem. Rev., 2012, 13(3), 169-189.
[167]
Fujishima, A.; Zhang, X.; Tryk, D.A. Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy, 2007, 32(14), 2664-2672.
[168]
Agnihotri, S.; Sillu, D.; Sharma, G.; Arya, R.K. Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: Process optimization and modeling kinetics for dye removal. Appl. Nanosci., 2018, 8(8), 2077-2092.
[169]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63(12), 515-582.
[170]
Tu, W.; Zhou, Y.; Zou, Z. Versatile graphene‐promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater., 2013, 23(40), 4996-5008.
[171]
Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal., 1990, 122(1), 178-192.
[172]
Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology, 2018, 29(34)342001
[173]
Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 2013, 3(1), 189-218.
[174]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev., 2014, 114(19), 9919-9986.
[175]
Borges, M.; Sierra, M.; Cuevas, E.; García, R.; Esparza, P. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol. Energy, 2016, 135, 527-535.
[176]
Zangeneh, H.; Zinatizadeh, A.; Habibi, M.; Akia, M.; Isa, M.H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem., 2015, 26, 1-36.
[177]
Liang, P.; Wei, A.; Zhang, Y.; Wu, J.; Zhang, X.; Li, S. Immobilisation of TiO2 films on activated carbon fibres by a hydrothermal method for photocatalytic degradation of toluene. Micro & Nano Lett., 2016, 11(9), 539-544.
[178]
Sabar, S.; Nawi, M.; Ngah, W. Photocatalytic removal of reactive red 4 dye by immobilised layer-by-layer TiO2/cross-linked chitosan derivatives system. Desalination Water Treat., 2016, 57(13), 5851-5857.
[179]
Lin, L.; Wang, H.; Jiang, W.; Mkaouar, A.R.; Xu, P. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J. Hazard. Mater., 2017, 333, 162-168.
[180]
Thiruppathi, M.; Senthil Kumar, P.; Devendran, P.; Ramalingan, C.; Swaminathan, M.; Nagarajan, E.R. Ce@TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J. Alloys Compd., 2018, 735, 728-734.
[181]
Benotti, M.J.; Stanford, B.D.; Wert, E.C.; Snyder, S.A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res., 2009, 43(6), 1513-1522.
[182]
Choina, J.; Bagabas, A.; Fischer, C.; Flechsig, G-U.; Kosslick, H.; Alshammari, A.; Schulz, A. The influence of the textural properties of ZnO nanoparticles on adsorption and photocatalytic remediation of water from pharmaceuticals. Catal. Today, 2015, 241, 47-54.
[183]
Li, X.; Yang, S.; Sun, J.; He, P.; Xu, X.; Ding, G. Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon, 2014, 78, 38-48.
[184]
Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ., 2012, 424, 1-10.
[185]
Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal., 2012, 2(8), 1596-1606.
[186]
Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem., 1997, 108(1), 1-35.
[187]
Liu, W.; Shang, Y.; Zhu, A.; Tan, P.; Liu, Y.; Qiao, L.; Chu, D.; Xiong, X.; Pan, J. Enhanced performance of doped BiOCl nanoplates for photocatalysis: Understanding from doping insight into improved spatial carrier separation. J. Mater. Chem. A , 2017, 5(24), 12542-12549.
[188]
Fox, M.A.; Doan, K.E.; Dulay, M.T. The effect of the “inert” support on relative photocatalytic activity in the oxidative decomposition of alcohols on irradiated titanium dioxide composites. Res. Chem. Intermed., 1994, 20(7), 711.
[189]
Devi, L.G.; Kavitha, R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B, 2013, 140, 559-587.
[190]
Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater., 2015, 27(13), 2150-2176.
[191]
Maji, T.K.; Bagchi, D.; Kar, P.; Karmakar, D.; Pal, S.K. Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: Ultrafast spectroscopy and computational studies. J. Photochem. Photobiol. A: Chem., 2017, 332, 391-398.
[192]
Mohamed, M.A.; Salleh, W.; Jaafar, J.; Ismail, A.; Mutalib, M.A.; Sani, N.; Asri, S.; Ong, C. Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chem. Eng. J., 2016, 284, 202-215.
[193]
Lee, S.C.; Jeong, Y.; Kim, Y.J.; Kim, H.; Lee, H.U.; Lee, Y-C.; Lee, S.M.; Kim, H.J.; An, H-R.; Ha, M.G. Hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide and its application in heavy metal removal and solar-induced photocatalytic degradation. J. Hazard. Mater., 2018, 354, 283-292.
[194]
Sotelo-Vazquez, C.; Noor, N.; Kafizas, A.; Quesada-Cabrera, R.; Scanlon, D.O.; Taylor, A.; Durrant, J.R.; Parkin, I.P. Multifunctional P-doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials. Chem. Mater., 2015, 27(9), 3234-3242.
[195]
Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res., 2017, 24(19), 15882-15904.
[196]
Thomas, M.; Natarajan, T.S. TiO2-high surface area materials based composite photocatalytic nanomaterials for degradation of pollutants: A review. Photocatal. Nanomat. Environ. Appl., 2018, 27, 48.
[197]
Zhang, H.; Banfield, J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B, 2000, 104(15), 3481-3487.
[198]
Ranade, M.; Navrotsky, A.; Zhang, H.; Banfield, J.; Elder, S.; Zaban, A.; Borse, P.; Kulkarni, S.; Doran, G.; Whitfield, H. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA, 2002, 99(Suppl. 2), 6476-6481.
[199]
Doll, T.E.; Frimmel, F.H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways. Water Res., 2004, 38(4), 955-964.
[200]
Addamo, M.; Augugliaro, V.; Di Paola, A.; Garcia-Lopez, E.; Loddo, V.; Marci, G.; Palmisano, L. Removal of drugs in aqueous systems by photoassisted degradation. J. Appl. Electrochem., 2005, 35(7-8), 765-774.
[201]
Molinari, R.; Pirillo, F.; Loddo, V.; Palmisano, L. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today, 2006, 118(1-2), 205-213.
[202]
Abellán, M.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B, 2007, 74(3-4), 233-241.
[203]
Zhang, X.; Wu, F.; Wu, X.; Chen, P.; Deng, N. Photodegradation of acetaminophen in TiO2 suspended solution. J. Hazard. Mater., 2008, 157(2-3), 300-307.
[204]
Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.; Mantzavinos, D.; Fatta-Kassinos, D. UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep. Sci. Technol., 2010, 45(11), 1564-1570.
[205]
Pereira, J.H.; Vilar, V.J.; Borges, M.T.; González, O.; Esplugas, S.; Boaventura, R.A. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol. Energy, 2011, 85(11), 2732-2740.
[206]
Sousa, M.; Gonçalves, C.; Vilar, V.J.; Boaventura, R.A.; Alpendurada, M. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chem. Eng. J., 2012, 198, 301-309.
[207]
Das, R.; Sarkar, S.; Chakraborty, S.; Choi, H.; Bhattacharjee, C. Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles. Ind. Eng. Chem. Res., 2014, 53(8), 3012-3020.
[208]
Bhanvase, B.; Shende, T.; Sonawane, S. A review on graphene-TiO2 and doped graphene-TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev., 2017, 6(1), 1-14.
[209]
Mori, K.; Miura, Y.; Shironita, S.; Yamashita, H. New route for the preparation of Pd and PdAu nanoparticles using photoexcited Ti-containing zeolite as an efficient support material and investigation of their catalytic properties. Langmuir, 2009, 25(18), 11180-11187.
[210]
Marschall, R.; Wang, L. Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today, 2014, 225, 111-135.
[211]
Liang, H.; Wang, Z.; Liao, L.; Chen, L.; Li, Z.; Feng, J. High performance photocatalysts: Montmorillonite supported-nano TiO2 composites. Optik-Int. J. Light Electron Opt., , 2017, 136, 44-51.
[212]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[213]
Wu, H-C.; Lin, Y-S.; Lin, S-W. Mechanisms of visible light photocatalysis in n-doped anatase TiO2 with oxygen vacancies from GGA+U calculations. Int. J. Photoenergy, 2013, 289328, 1-7.
[214]
Shafeeyan, M.S.; Daud, W.M.A.W.; Shamiri, A.; Aghamohammadi, N. Modeling of carbon dioxide adsorption onto ammonia-modified activated carbon: Kinetic analysis and breakthrough behavior. Energy Fuels, 2015, 29(10), 6565-6577.
[215]
Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem. Eng. J., 2015, 261, 3-8.
[216]
Eslami, A.; Amini, M.M.; Yazdanbakhsh, A.R.; Mohseni‐Bandpei, A.; Safari, A.A.; Asadi, A.N. S co‐doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non‐steroidal anti‐inflammatory drugs in water: a comparative study. J. Chem. Technol. Biotechnol., 2016, 91(10), 2693-2704.
[217]
Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation-A review. J. Environ. Manage., 2017, 198, 78-94.
[218]
Bu, D.; Zhuang, H. Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline. Appl. Surf. Sci., 2013, 265, 677-685.
[219]
Ofiarska, A.; Pieczyńska, A.; Borzyszkowska, A.F.; Stepnowski, P.; Siedlecka, E.M. Pt-TiO2-assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight. Chem. Eng. J., 2016, 285, 417-427.
[220]
Wang, Q.; Yang, C.; Zhang, G.; Hu, L.; Wang, P. Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation. Chem. Eng. J., 2017, 319, 39-47.
[221]
Zhiyong, Y.; Bensimon, M.; Sarria, V.; Stolitchnov, I.; Jardim, W.; Laub, D.; Mielczarski, E.; Mielczarski, J.; Kiwi-Minsker, L.; Kiwi, J. ZnSO4-TiO2 doped catalyst with higher activity in photocatalytic processes. Appl. Catal. B, 2007, 76(1-2), 185-195.
[222]
Zhang, J.; Tse, K.; Wong, M.; Zhang, Y.; Zhu, J. A brief review of co-doping. Front. Phys., 2016, 11(6)117405
[223]
Phattalung, S.N.; Limpijumnong, S.; Yu, J. Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity. Appl. Catal. B, 2017, 200, 1-9.
[224]
Buda, W.; Czech, B. Preparation and characterization of C, N-codoped TiO2 photocatalyst for the degradation of diclofenac from wastewater. Water Sci. Technol., 2013, 68(6), 1322-1328.
[225]
Segne, T.A.; Tirukkovalluri, S.R.; Challapalli, S. Studies on characterization and photocatalytic activities of visible light sensitive TiO2 nano catalysts co-doped with magnesium and copper. Int. Res. J. Pure Appl. Chem., 2011, 1(3), 84.
[226]
Choi, H.; Shin, D.; Yeo, B.C.; Song, T.; Han, S.S.; Park, N.; Kim, S. Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catal., 2016, 6(5), 2745-2753.
[227]
Kadam, A.; Dhabbe, R.; Shin, D-S.; Garadkar, K.; Park, J. Sunlight driven high photocatalytic activity of Sn doped N-TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int., 2017, 43(6), 5164-5172.
[228]
Khalid, N.; Majid, A.; Tahir, M.B.; Niaz, N.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int., 2017, 43(17), 14552-14571.
[229]
Tao, H.; Liang, X.; Zhang, Q.; Chang, C-T. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of acetaminophen. Appl. Surf. Sci., 2015, 324, 258-264.
[230]
Ahmadi, M.; Motlagh, H.R.; Jaafarzadeh, N.; Mostoufi, A.; Saeedi, R.; Barzegar, G.; Jorfi, S. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage., 2017, 186, 55-63.
[231]
Jung, J-Y.; Lee, D.; Lee, Y-S. CNT-embedded hollow TiO2 nanofibers with high adsorption and photocatalytic activity under UV irradiation. J. Alloys Compd., 2015, 622, 651-656.
[232]
Karaolia, P.; Michael-Kordatou, I.; Hapeshi, E.; Drosou, C.; Bertakis, Y.; Christofilos, D.; Armatas, G.S.; Sygellou, L.; Schwartz, T.; Xekoukoulotakis, N.P. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl. Catal. B, 2018, 224, 810-824.
[233]
Sun, T.; Qiu, J.; Liang, C. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C, 2008, 112(3), 715-721.
[234]
Ye, C.; Bando, Y.; Shen, G.; Golberg, D. Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B, 2006, 110(31), 15146-15151.
[235]
Yu, J.; Yu, X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol., 2008, 42(13), 4902-4907.
[236]
Xie, W.; Li, Y.; Sun, W.; Huang, J.; Xie, H.; Zhao, X. Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J. Photochem. Photobiol. A: Chem., 2010, 216(2), 149-155.
[237]
Dindar, B.; Içli, S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J. Photochem. Photobiol. A: Chem., 2001, 140(3), 263-268.
[238]
Bylander, E. Surface effects on the low‐energy cathodoluminescence of zinc oxide. J. Appl. Phys., 1978, 49(3), 1188-1195.
[239]
Wang, X.; Zhao, F.; Xie, P.; Deng, S.; Xu, N.; Wang, H. Surface emission characteristics of ZnO nanoparticles. Chem. Phys. Lett., 2006, 423(4-6), 361-365.
[240]
Farzadkia, M.; Esrafili, A.; Baghapour, M.A.; Shahamat, Y.D.; Okhovat, N. Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process. Desalination Water Treat., 2014, 52(25-27), 4947-4952.
[241]
Mijin, D.; Savić, M.; Smiljanić, A.; Glavaški, O.; Jovanović, M.; Petrović, S. A study of the photocatalytic degradation of metamitron in ZnO water suspensions. Desalination, 2009, 249(1), 286-292.
[242]
El-Kemary, M.; El-Shamy, H.; El-Mehasseb, I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin., 2010, 130(12), 2327-2331.
[243]
Anandan, S.; Vinu, A.; Lovely, K.S.; Gokulakrishnan, N.; Srinivasu, P.; Mori, T.; Murugesan, V.; Sivamurugan, V.; Ariga, K. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A Chem., 2007, 266(1-2), 149-157.
[244]
Shakir, M.; Faraz, M.; Sherwani, M.A.; Al-Resayes, S.I. Photocatalytic degradation of the paracetamol drug using Lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin., 2016, 176, 159-167.
[245]
Elmolla, E.S.; Chaudhuri, M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J. Hazard. Mater., 2010, 173(1-3), 445-449.
[246]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[247]
Yousefi, R.; Jamali-Sheini, F.; Cheraghizade, M.; Khosravi-Gandomani, S.; Sáaedi, A.; Huang, N.M.; Basirun, W.J.; Azarang, M. Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semiconduct. Prcess., 2015, 32, 152-159.
[248]
Lavand, A.B.; Malghe, Y.S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. J. Asian Ceram. Soc., 2015, 3(3), 305-310.
[249]
Moussa, H.; Girot, E.; Mozet, K.; Alem, H.; Medjahdi, G.; Schneider, R. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B, 2016, 185, 11-21.
[250]
Wang, Y.; Zheng, Y-Z.; Lu, S.; Tao, X.; Che, Y.; Chen, J-F. Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl. Mater. Interfaces, 2015, 7(11), 6093-6101.
[251]
Zhao, X.; Shen, H.; Zhang, Y.; Li, X.; Zhao, X.; Tai, M.; Li, J.; Li, J.; Lin, H. Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl. Mater. Interfaces, 2016, 8(12), 7826-7833.
[252]
Ullah, R.; Dutta, J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater., 2008, 156(1-3), 194-200.
[253]
Nair, M.G.; Nirmala, M.; Rekha, K.; Anukaliani, A. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett., 2011, 65(12), 1797-1800.
[254]
Fu, M.; Li, Y.; Lu, P.; Liu, J.; Dong, F. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci., 2011, 258(4), 1587-1591.
[255]
Whang, T-J.; Hsieh, M-T.; Chen, H-H. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Sci., 2012, 258(7), 2796-2801.
[256]
Türkyılmaz, Ş.Ş.; Güy, N.; Özacar, M. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A: Chem., 2017, 341, 39-50.
[257]
Eskandarloo, H.; Badiei, A.; Behnajady, M.A.; Ziarani, G.M. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrason. Sonochem., 2016, 28, 169-177.
[258]
Li, D.; Kaner, R.B. Graphene-based materials. Nat. Nanotechnol., 2008, 3, 101.
[259]
Bolotin, K.I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146(9-10), 351-355.
[260]
Xu, T.; Zhang, L.; Cheng, H.; Zhu, Y. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B, 2011, 101(3-4), 382-387.
[261]
Bai, X.; Wang, L.; Zong, R.; Lv, Y.; Sun, Y.; Zhu, Y. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9), 3097-3105.
[262]
Wang, J.; Tsuzuki, T.; Tang, B.; Hou, X.; Sun, L.; Wang, X. Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces, 2012, 4(6), 3084-3090.
[263]
Thi, V.H.T.; Lee, B-K. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater., 2017, 324, 329-339.
[264]
Anirudhan, T.S.; Deepa, J.R. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci., 2017, 490, 343-356.
[265]
Tobajas, M.; Belver, C.; Rodríguez, J.J. Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chem. Eng. J., 2017, 309, 596-606.
[266]
Sajjad, A.K.L.; Sajjad, S.; Iqbal, A. ZnO/WO3 nanostructure as an efficient visible light catalyst. Ceram. Int., 2018, 44(8), 9364-9371.
[267]
Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev., 2018, 81, 536-551.
[268]
Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7), 1308-1316.
[269]
Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S.T. Long‐Term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater., 2010, 22(48), 5463-5467.
[270]
Carabante, I.; Grahn, M.; Holmgren, A.; Kumpiene, J.; Hedlund, J. Adsorption of As(V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids Surf. Physicochem. Eng. Aspects, 2009, 346(1-3), 106-113.
[271]
Akhavan, O.; Azimirad, R. Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl. Catal. A, 2009, 369(1-2), 77-82.
[272]
Feng, W.; Nansheng, D.; Helin, H. Degradation mechanism of azo dye CI reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere, 2000, 41(8), 1233-1238.
[273]
Bautista, P.; Mohedano, A.; Casas, J.; Zazo, J.; Rodriguez, J. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol., 2008, 83(10), 1323-1338.
[274]
Nogueira, R.F.P.; Trovó, A.G.; Silva, M.R.A.d.; Villa, R.D.; Oliveira, M.C.d. Fundaments and environmental applications of Fenton and photo-Fenton processes. Quim. Nova, 2007, 30(2), 400-408.
[275]
Rozas, O.; Contreras, D.; Mondaca, M.A.; Pérez-Moya, M.; Mansilla, H.D. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J. Hazard. Mater., 2010, 177(1-3), 1025-1030.
[276]
Boruah, P.K.; Sharma, B.; Karbhal, I.; Shelke, M.V.; Das, M.R. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J. Hazard. Mater., 2017, 325, 90-100.
[277]
Bansal, P.; Verma, A. Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of Cephalexin using TiO2 immobilized novel clay beads with waste fly ash/foundry sand. J. Photochem. Photobiol. A: Chem., 2017, 342, 131-142.
[278]
Wang, C-T. Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation. J. Non-Cryst. Solids, 2007, 353(11-12), 1126-1133.
[279]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1), 76.
[280]
Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem. Sci., 2012, 3(2), 443-446.
[281]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2012, 5(5), 6717-6731.
[282]
Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal‐free catalyst for Friedel-crafts reaction of benzene. Angew. Chem. Int. Ed., 2006, 45(27), 4467-4471.
[283]
Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc., 2009, 131(5), 1680-1681.
[284]
Yan, S.C.; Lv, S.B.; Li, Z.S.; Zou, Z.G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans., 2010, 39(6), 1488-1491.
[285]
Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale, 2015, 7(1), 15-37.
[286]
Zhang, Y.; Ligthart, D.M.; Quek, X-Y.; Gao, L.; Hensen, E.J. Influence of Rh nanoparticle size and composition on the photocatalytic water splitting performance of Rh/graphitic carbon nitride. Int. J. Hydrogen Energy, 2014, 39(22), 11537-11546.
[287]
Ma, S.; Zhan, S.; Jia, Y.; Shi, Q.; Zhou, Q. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B, 2016, 186, 77-87.
[288]
Ran, J.; Ma, T.Y.; Gao, G.; Du, X-W.; Qiao, S.Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci., 2015, 8(12), 3708-3717.
[289]
Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal‐containing carbon nitride compounds: A new functional organic-metal hybrid material. Adv. Mater., 2009, 21(16), 1609-1612.
[290]
Han, C.; Wu, L.; Ge, L.; Li, Y.; Zhao, Z. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation. Carbon, 2015, 92, 31-40.
[291]
Liang, Q.; Zhang, M.; Liu, C.; Xu, S.; Li, Z. Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A, 2016, 519, 107-115.
[292]
Paragas, L.K.B.; De Luna, M.D.G.; Doong, R-A. Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts. Chemosphere, 2018, 210, 1099-1107.
[293]
Zheng, Q.; Durkin, D.P.; Elenewski, J.E.; Sun, Y.; Banek, N.A.; Hua, L.; Chen, H.; Wagner, M.J.; Zhang, W.; Shuai, D. Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment. Environ. Sci. Technol., 2016, 50(23), 12938-12948.
[294]
Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A.Z.; Ramakrishna, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A , 2017, 5(45), 23406-23433.
[295]
Li, G.; Nie, X.; Gao, Y.; An, T. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation? Implications of persistent toxic intermediates. Appl. Catal. B, 2016, 180, 726-732.
[296]
Muduli, S.K.; Wang, S.; Chen, S.; Ng, C.F.; Huan, C.H.A.; Sum, T.C.; Soo, H.S. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes. Beilstein J. Nanotechnol., 2014, 5, 517.
[297]
Jourshabani, M.; Shariatinia, Z.; Badiei, A. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation. J. Colloid Interface Sci., 2017, 507, 59-73.
[298]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211, 317-331.
[299]
Kim, J.; Lee, C.W.; Choi, W. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol., 2010, 44(17), 6849-6854.
[300]
Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc., 2008, 130(25), 7780-7781.
[301]
Miyauchi, M. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. Phys. Chem. Chem. Phys., 2008, 10(41), 6258-6265.
[302]
Rey, A.; García-Muñoz, P.; Hernández-Alonso, M.; Mena, E.; García-Rodríguez, S.; Beltrán, F. WO3-TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent. Appl. Catal. B, 2014, 154, 274-284.
[303]
Ioannidou, E.; Frontistis, Z.; Antonopoulou, M.; Venieri, D.; Konstantinou, I.; Kondarides, D.I.; Mantzavinos, D. Solar photocatalytic degradation of sulfamethoxazole over tungsten-Modified TiO2. Chem. Eng. J., 2017, 318, 143-152.
[304]
Fakhri, A.; Behrouz, S. Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol. Energy, 2015, 112, 163-168.
[305]
Rao, Y.; Chu, W.; Wang, Y. Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway. Appl. Catal. A, 2013, 468, 240-249.
[306]
Yanyan, L.; Kurniawan, T.A.; Ying, Z.; Albadarin, A.B.; Walker, G. Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV-Vis irradiation. J. Mol. Liq., 2017, 243, 761-770.
[307]
Dong, S.; Sun, J.; Li, Y.; Yu, C.; Li, Y.; Sun, J. ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole. Appl. Catal. B, 2014, 144, 386-393.
[308]
Jallouli, N.; Pastrana-Martinez, L.M.; Ribeiro, A.R.; Moreira, N.F.; Faria, J.L.; Hentati, O.; Silva, A.M.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J., 2018, 334, 976-984.
[309]
Kumar, A.; Khan, M.; Fang, L.; Lo, I.M. Visible-light-driven NTiO2@ SiO2@ Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs. J. Hazard. Mater., 2017. pii: S0304-3894(17)30556-3.
[310]
Belver, C.; Han, C.; Rodriguez, J.; Dionysiou, D. Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal. Today, 2017, 280, 21-28.
[311]
Alalm, M.G.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng., 2016, 4(2), 1929-1937.
[312]
Maraschi, F.; Sturini, M.; Speltini, A.; Pretali, L.; Profumo, A.; Pastorello, A.; Kumar, V.; Ferretti, M.; Caratto, V. TiO2-modified zeolites for fluoroquinolones removal from wastewaters and reuse after solar light regeneration. J. Environ. Chem. Eng., 2014, 2(4), 2170-2176.
[313]
Wang, X.; Tang, Y.; Leiw, M-Y.; Lim, T-T. Solvothermal synthesis of Fe-C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water. Appl. Catal. A, 2011, 409, 257-266.
[314]
Alawi, M.A.; Alahmad, W. Kinetic study of photocatalytic degradation of several pharmaceuticals assisted by SiO2/TiO2 catalyst in solar bath system. Jordan J. Pharm. Sci., 2010, 108(393), 1-22.
[315]
Yang, H.; Li, G.; An, T.; Gao, Y.; Fu, J. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catal. Today, 2010, 153(3-4), 200-207.
[316]
Alalm, M.G.; Ookawara, S.; Fukushi, D.; Sato, A.; Tawfik, A. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin. J. Hazard. Mater., 2016, 302, 225-231.
[317]
Chen, S.; Li, Y.; Lü, R.; Jiang, J.; Zhang, G.; Wang, P. Optimization and modeling of photocatalytic removal of norfloxacin using tungsten bismuth loaded carbon iron complexes based on response surface methodology. Ind. Eng. Chem. Res., 2014, 53(26), 10775-10783.
[318]
El Bekkali, C.; Bouyarmane, H.; El Karbane, M.; Masse, S.; Saoiabi, A.; Coradin, T.; Laghzizil, A. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids Surf. Physicochem. Eng. Aspects, 2018, 539, 364-370.
[319]
Mahdizadeh, F.; Aber, S.; Karimi, A. Synthesis of nano zinc oxide on granular porous scoria: Application for photocatalytic removal of pharmaceutical and textile pollutants from synthetic and real wastewaters. J. Taiwan Inst. Chem. Eng., 2015, 49, 212-219.
[320]
Nosrati, R.; Olad, A.; Maramifar, R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. , 2012, 19(6), 2291-2299.
[321]
Pardeshi, S.; Patil, A. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J. Hazard. Mater., 2009, 163(1), 403-409.
[322]
Zammouri, L.; Aboulaich, A.; Capoen, B.; Bouazaoui, M.; Sarakha, M.; Stitou, M.; Mahiou, R. Enhancement under UV-visible and visible light of the ZnO photocatalytic activity for the antibiotic removal from aqueous media using Ce-doped Lu3Al5O12 nanoparticles. Mater. Res. Bull., 2018, 106, 162-169.
[323]
Khoshnamvand, N.; Mostafapour, F.K.; Mohammadi, A.; Faraji, M. Response Surface Methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express, 2018, 8(1), 48.
[324]
Paragas, L.K.B.; De Luna, M.D.G.; Doong, R-A. Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts. Chemosphere, 2018, 210, 1099-1107.
[325]
Gao, X.; Zhang, X.; Wang, Y.; Peng, S.; Yue, B.; Fan, C. Rapid synthesis of hierarchical BiOCl microspheres for efficient photocatalytic degradation of carbamazepine under simulated solar irradiation. Chem. Eng. J., 2015, 263, 419-426.
[326]
Xia, D.; Lo, I.M. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Res., 2016, 100, 393-404.
[327]
Gonçalves, A.; Órfão, J.J.; Pereira, M.F.R. Ozonation of bezafibrate promoted by carbon materials. Appl. Catal. B, 2013, 140, 82-91.
[328]
Fathinia, M.; Khataee, A.; Naseri, A.; Aber, S. Monitoring simultaneous photocatalytic-ozonation of mixture of pharmaceuticals in the presence of immobilized TiO 2 nanoparticles using MCR-ALS: Identification of intermediates and multi-response optimization approach. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2015, 136, 1275-1290.
[329]
Yu, L.; Wang, D.; Ye, D. Solar photocatalytic ozonation of emerging contaminants detected in municipal wastewater treatment plant effluents by magnetic MWCNTs/TiO 2 nanocomposites. RSC Advances, 2015, 5(117), 96896-96904.
[330]
Jothinathan, L.; Hu, J. Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen. Water Res., 2018, 134, 63-73.
[331]
Hou, L.; Zhang, H.; Wang, L.; Chen, L.; Xiong, Y.; Xue, X. Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst. Separ. Purif. Tech., 2013, 117, 46-52.
[332]
Hou, L.; Zhang, H.; Wang, L.; Chen, L. Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water. Chem. Eng. J., 2013, 229, 577-584.
[333]
Aguinaco, A.; Beltrán, F.J.; García-Araya, J.F.; Oropesa, A. Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chem. Eng. J., 2012, 189, 275-282.
[334]
Moreira, N.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res., 2015, 87, 87-96.
[335]
Márquez, G.; Rodríguez, E.M.; Beltrán, F.J.; Álvarez, P.M. Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water. Chemosphere, 2014, 113, 71-78.
[336]
Quiñones, D.H.; Álvarez, P.M.; Rey, A.; Contreras, S.; Beltrán, F.J. Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant. Chem. Eng. J., 2015, 260, 399-410.
[337]
Fathinia, M.; Khataee, A. Photocatalytic ozonation of phenazopyridine using TiO 2 nanoparticles coated on ceramic plates: Mechanistic studies, degradation intermediates and ecotoxicological assessments. Appl. Catal. A Gen., 2015, 491, 136-154.
[338]
Yin, R.; Guo, W.; Zhou, X.; Zheng, H.; Du, J.; Wu, Q.; Chang, J.; Ren, N. Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: Catalytic performance and degradation mechanism. RSC Advances, 2016, 6(23), 19265-19270.
[339]
Mashayekh-Salehi, A.; Moussavi, G.; Yaghmaeian, K. Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chem. Eng. J., 2017, 310, 157-169.
[340]
Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol., 2004, 38(6), 1888-1896.
[341]
Hilal, N.; Al-Zoubi, H.; Darwish, N.; Mohamma, A.; Arabi, M.A. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3), 281-308.
[342]
Lu, X.; Bian, X.; Shi, L. Preparation and characterization of NF composite membrane. J. Membr. Sci., 2002, 210(1), 3-11.
[343]
Mohammad, A.W.; Teow, Y.; Ang, W.; Chung, Y.; Oatley-Radcliffe, D.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356, 226-254.
[344]
Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environ. Prog., 2003, 22(1), 46-56.
[345]
Li, J.B.; Zhu, J.W.; Zheng, M.S. Morphologies and properties of poly (phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. J. Appl. Polym. Sci., 2007, 103(6), 3623-3629.
[346]
Li, J-F.; Xu, Z-L.; Yang, H.; Yu, L-Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci., 2009, 255(9), 4725-4732.
[347]
Cortalezzi, M.M.; Rose, J.; Barron, A.R.; Wiesner, M.R. Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. J. Membr. Sci., 2002, 205(1-2), 33-43.
[348]
Cortalezzi, M.a.M.; Rose, J.; Wells, G.F.; Bottero, J-Y.; Barron, A.R.; Wiesner, M.R. Ceramic membranes derived from ferroxane nanoparticles: A new route for the fabrication of iron oxide ultrafiltration membranes. J. Membr. Sci., 2003, 227(1-2), 207-217.
[349]
Luo, M-L.; Zhao, J-Q.; Tang, W.; Pu, C-S. Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci., 2005, 249(1-4), 76-84.
[350]
Moermans, B.; De Beuckelaer, W.; Vankelecom, I.F.; Ravishankar, R.; Martens, J.A.; Jacobs, P.A. Incorporation of nano-sized zeolites in membranes. Chem. Commun., 2000, 24, 2467-2468.
[351]
You, S-J.; Semblante, G.U.; Lu, S-C.; Damodar, R.A.; Wei, T-C. Evaluation of the antifouling and photocatalytic properties of poly (vinylidene fluoride) plasma-grafted poly (acrylic acid) membrane with self-assembled TiO2. J. Hazard. Mater., 2012, 237, 10-19.
[352]
Rahimpour, A.; Jahanshahi, M.; Rajaeian, B.; Rahimnejad, M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination, 2011, 278(1-3), 343-353.
[353]
Madaeni, S.; Zinadini, S.; Vatanpour, V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci., 2011, 380(1-2), 155-162.
[354]
Zhu, T.; Lin, Y.; Luo, Y.; Hu, X.; Lin, W.; Yu, P.; Huang, C. Preparation and characterization of TiO2-regenerated cellulose inorganic-polymer hybrid membranes for dehydration of caprolactam. Carbohydr. Polym., 2012, 87(1), 901-909.
[355]
Liu, M-K.; Liu, Y-Y.; Bao, D-D.; Zhu, G.; Yang, G-H.; Geng, J-F.; Li, H-T. Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Sci. Rep., 2017, 7, 43717.
[356]
Mueller, N.C.; Van Der Bruggen, B.; Keuter, V.; Luis, P.; Melin, T.; Pronk, W.; Reisewitz, R.; Rickerby, D.; Rios, G.M.; Wennekes, W. Nanofiltration and nanostructured membranes-should they be considered nanotechnology or not? J. Hazard. Mater., 2012, 211, 275-280.
[357]
Kim, J.; Van Der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut., 2010, 158(7), 2335-2349.
[358]
Fernández, R.L.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Separ. Purif. Tech., 2014, 127, 131-139.
[359]
Van Der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Separ. Purif. Tech., 2008, 63(2), 251-263.
[360]
Matos, M.; Gutiérrez, G.; Lobo, A.; Coca, J.; Pazos, C.; Benito, J.M. Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J. Membr. Sci., 2016, 520, 749-759.
[361]
Kumar, R.; Dhakate, S.R.; Gupta, T.; Saini, P.; Singh, B.P.; Mathur, R.B. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A, 2013, 1(18), 5727-5735.
[362]
Gulotty, R.; Castellino, M.; Jagdale, P.; Tagliaferro, A.; Balandin, A.A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano, 2013, 7(6), 5114-5121.
[363]
Wang, L.; Song, X.; Wang, T.; Wang, S.; Wang, Z.; Gao, C. Fabrication and characterization of Polyethersulfone/Carbon Nanotubes (PES/CNTs) based Mixed Matrix Membranes (MMMs) for nanofiltration application. Appl. Surf. Sci., 2015, 330, 118-125.
[364]
Farahani, M.H.D.A.; Hua, D.; Chung, T-S. Cross-linked Mixed Matrix Membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for Organic Solvent Nanofiltration (OSN) with enhanced flux. J. Membr. Sci., 2018, 548, 319-331.
[365]
Dong, L-X.; Huang, X-C.; Wang, Z.; Yang, Z.; Wang, X-M.; Tang, C.Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separ. Purif. Tech., 2016, 166, 230-239.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy