[1]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
[2]
Ma PX. Scaffold for tissue fabrication. Mater Today 2004; 7(5): 30-40.
[3]
O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005; 26(4): 433-41.
[4]
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529-43.
[5]
Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32(3): 477-86.
[6]
Quirk RA, France RM, Shakesheff KM, Howdle SM. Supercritical fluid technologies and tissue engineering scaffolds. Curr Opin Solid State Mater Sci 2004; 8(3-4): 313-21.
[7]
Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of (D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996; 17(14): 1417-22.
[8]
Mooney DJ, Kim BS, Harris LD. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 1998; 42(3): 396-402.
[9]
Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003; 24(13): 2363-78.
[10]
Kho YW, Kalika DS, Knutson BL. Precipitation of nylon 6 membranes using compressed carbon dioxide. Polymer 2001; 42(14): 6119.
[11]
Matsuyama H, Yamamoto A, Yano H. etal. Formation of porous flat membrane by phase separation with supercritical CO2. J Membr Sci 2001; 194(2): 157-63.
[12]
Matsuyama H, Yamamoto A, Yano H. etal. Effect of organic solvents on membrane formation by phase separation with supercritical CO2. J Membr Sci 2002; 204(1-2): 81-7.
[13]
Reverchon E, Cardea S, Rapuano C. Formation of poly-vinyl-alcohol structures by supercritical CO2. J Appl Polym Sci 2007; 104(5): 3151-60.
[14]
Cardea S, Sessa M, Reverchon E. Supercritical phase inversion to form drug-loaded poly (vinylidene fluoride-co-hexafluoropropylene) membranes. Ind Eng Chem Res 2010; 49(6): 2783-9.
[15]
Xu Q, Pang M, Peng Q, Li J, Jiang Y. Application of supercritical carbon dioxide in the preparation of biodegradable polylactide membranes. J Appl Polym Sci 2004; 94(5): 2158-63.
[16]
Xu Q, Pang M, Peng Q. etal. Effect of different experimental conditions on biodegradable polylactide membranes prepared with supercritical CO2 as nonsolvent. J Appl Polym Sci 2005; 98(2): 831-7.
[17]
Daniel C, Longo S, Cardea S, Vitillo JG, Guerra G. Monolithic nanoporous-crystalline aerogels based on PPO. RSC Advances 2012; 2(31): 12011-8.
[18]
Tsivintzelis I, Pavlidou E, Panayiotou C. Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent: I. Poly (l-lactic acid). J Supercrit Fluids 2006; 40(2): 317-22.
[19]
Baldino L, Naddeo F, Cardea S, Naddeo A, Reverchon E. FEM modeling of the reinforcement mechanism of hydroxyapatite in PDLA scaffolds produced by supercritical drying, for tissue engineering applications. J Mech Behav Biomed Mater 2015; 51: 225.
[20]
Baldino L, Concilio S, Cardea S, De Marco I, Reverchon E. Complete glutaraldehyde elimination during
chitosan hydrogel drying by SC-CO2 processing. J
Supercrit Fluids 215; 103: 70.
[21]
Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P. Polylactide macroporous biodegradable implants for cell transplantation. II Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res 1996; 30(4): 449-61.
[22]
Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 1999; 47: 8-17.
[23]
Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 2000; 52(2): 430-8.
[24]
Woo MK, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mat Res Part. A 2003; 67(2): 531-7.
[25]
Daniel C, Alfano D, Venditto V. etal. Aerogels with a microporous crystalline host phase. Adv Mater 2005; 17(12): 1515-8.
[26]
Brunner G. Gas Extraction in: Steinkopff Darkmstadt. New York: Springer 1994.
[27]
Reverchon E, Cardea S. Production of controlled polymeric foams by supercritical CO2. J Supercrit Fluids 2007; 40: 144-52.
[28]
Chen VJ, Ma PX. Nano-fibrous poly (L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004; 25(11): 2065-73.
[29]
Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res Part A 2006; 78(2): 306-15.
[30]
Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 1999; 46: 60-72.
[31]
Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Biomaterials 2006; 27(21): 3980-7.
[32]
Zhang J, Zhang H, Wu L, Ding J. Fabrication of three dimensional polymeric scaffolds with spherical pores. J Mater Sci 2006; 41(6): 1725-31.