Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Synthesis of Ag-Au/Reduced Graphene Oxide/TiO2 Nanocomposites: Application as a Non-enzymatic Amperometric H2O2 Sensor

Author(s): Long Han, Shoufang Cui, Dongmei Deng*, Yuanyuan Li, Xiaoxia Yan, Haibo He and Liqiang Luo*

Volume 16, Issue 4, 2020

Page: [485 - 492] Pages: 8

DOI: 10.2174/1573411015666181126103804

Price: $65

conference banner
Abstract

Background: Owing to the strong oxidizing and reducing properties of hydrogen peroxide (H2O2), it has been widely used in many fields. In particular, H2O2 is widely used in the aseptic packaging of drinks and milk. The residue of H2O2 in food is harmful to human health. Therefore, the quantitative detection of H2O2 is of great practical significance.

Methods: The Ag-Au/RGO/TiO2 nanocomposites were facilely synthesized by photo-reduction approach. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize the synthesized Ag-Au/RGO/TiO2 nanocomposites. Cyclic voltammetry was used to analyze the electrochemical behavior of H2O2 on the Ag-Au/RGO/TiO2/GCE. Amperometry was applied for quantitative determination of the concentration of H2O2.

Results: A novel Ag-Au/RGO/TiO2/GCE was prepared. The Ag-Au/RGO/TiO2/GCE displayed high electrocatalytic activity towards H2O2 reduction. An electrochemical reduction peak of H2O2 was achieved on the Ag-Au/RGO/TiO2/GCE. The current responses were linear with the concentrations of H2O2 in the range of 0.01-30 mM with the detection limit of 3.0 μM (S/N = 3).

Conclusion: An amperometric sensor has been prepared for H2O2 detection using Ag- Au/RGO/TiO2/GCE. The Ag-Au/RGO/TiO2/GCE shows good performance for the determination of H2O2. The proposed sensor exhibits good selectivity and stability.

Keywords: Ag-Au bimetal, electrochemical sensor, H2O2, reduced graphene oxide, TiO2, transmission electron microscopy.

Graphical Abstract

[1]
Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem., 2009, 81(14), 5603-5613.
[http://dx.doi.org/10.1021/ac900136z] [PMID: 19522529]
[2]
Wang, W.Z.; Wang, G.H.; Wang, X.S.; Zhan, Y.J.; Liu, Y.K.; Zheng, C.L. Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv. Mater., 2002, 14, 67-69.
[http://dx.doi.org/10.1002/1521-4095(20020104)14:1<67:AID-ADMA67>3.0.CO;2-Z]
[3]
Üzer, A.; Durmazel, S.; Erçağ, E.; Apak, R. Determination of hydrogen peroxide and triacetone triperoxide (TATP) with a silver nanoparticles-based turn-on colorimetric sensor. Sens. Actuators B Chem., 2017, 247, 98-107.
[http://dx.doi.org/10.1016/j.snb.2017.03.012]
[4]
Jouyban, A.; Rahimpour, E.; Jouybangharamaleki, V.; Khoubnasabjafari, M.; Abdolmohammadzadeh, H. Development and validation of a novel fluorometric sensor for hydrogen peroxide monitoring in exhaled breath condensate. Anal. Methods, 2017, 9, 4371-4379.
[http://dx.doi.org/10.1039/C7AY01535F]
[5]
Monakhova, Y.; Diehl, B. Rapid 1H NMR determination of hydrogen peroxide in cosmetic products and chemical reagents. Anal. Methods, 2016, 8, 4632-4639.
[http://dx.doi.org/10.1039/C6AY00936K]
[6]
Rodionov, P.V.; Alieva, E.A.; Sergeeva, E.A.; Veselova, I.A.; Shekhovtsova, T.N. Determination of hydrogen peroxide and organic peroxides in micellar and aqueous-organic media using a spectrophotometric biosensor based on horseradish peroxidase. J. Anal. Chem., 2016, 71, 932-943.
[http://dx.doi.org/10.1134/S1061934816090148]
[7]
Pinkernell, U.; Effkemann, S.; Karst, U. Simultaneous HPLC determination of peroxyacetic Acid and hydrogen peroxide. Anal. Chem., 1997, 69(17), 3623-3627.
[http://dx.doi.org/10.1021/ac9701750] [PMID: 21639287]
[8]
Hurdis, E.C.; Romeyn, H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal. Chem., 1954, 26, 320-325.
[http://dx.doi.org/10.1021/ac60086a016]
[9]
Li, Y.; You, X.; Shi, X. Enhanced chemiluminescence determination of hydrogen peroxide in milk sample using metal-organic framework Fe-MIL-88NH2 as peroxidase mimetic. Food Anal. Methods, 2016, 10, 1-8.
[10]
Xi, F.; Zhao, D.; Wang, X.; Chen, P. Non-enzymatic detection of hydrogen peroxide using a functionalized three-dimensional graphene electrode. Electrochem. Commun., 2013, 26, 81-84.
[http://dx.doi.org/10.1016/j.elecom.2012.10.017]
[11]
Chen, S.; Yuan, R.; Chai, Y.; Zhang, L.; Wang, N.; Li, X. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens. Bioelectron., 2007, 22(7), 1268-1274.
[http://dx.doi.org/10.1016/j.bios.2006.05.022] [PMID: 16820288]
[12]
Cheng, C.; Zhang, C.; Gao, X.; Zhuang, Z.; Du, C.; Chen, W. 3D network and 2D paper of reduced graphene oxide/Cu2O composite for electrochemical sensing of hydrogen peroxide. Anal. Chem., 2018, 90(3), 1983-1991.
[http://dx.doi.org/10.1021/acs.analchem.7b04070] [PMID: 29286638]
[13]
Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.P.; Xia, Y. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc., 2010, 132(32), 11372-11378.
[http://dx.doi.org/10.1021/ja104931h] [PMID: 20698704]
[14]
Zhang, J.; Langille, M.R.; Mirkin, C.A. Photomediated synthesis of silver triangular bipyramids and prisms: the effect of pH and BSPP. J. Am. Chem. Soc., 2010, 132(35), 12502-12510.
[http://dx.doi.org/10.1021/ja106008b] [PMID: 20718424]
[15]
James, P.N.; Louis, C.B.I.; Fredrick, W.V.; Robert, C.J.; Buford, I.L.; Joseph, T.H.; Daniel, L.F. Nonlinear optical properties of molecularly bridged gold nanoparticle arrays. J. Am. Chem. Soc., 2015, 122, 12029-12030.
[16]
Chen, S.; Yang, Y. Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. J. Am. Chem. Soc., 2002, 124(19), 5280-5281.
[http://dx.doi.org/10.1021/ja025897+] [PMID: 11996564]
[17]
Arvinte, A.; Ignat, M.; Pinteala, M.; Ignat, L. Electrochemical survey of silver nanoparticles-lignosulfonate formation and their assessment in the electrocatalytic oxidation of p-nitrophenol. Curr. Anal. Chem., 2017, 13, 370-378.
[http://dx.doi.org/10.2174/1573411012666161102143930]
[18]
Wahab, M.A.; Islam, N.; Hoque, M.E.; Young, D.J. Recent advances in silver nanoparticle containing biopolymer nanocomposites for infectious disease control - a mini review. Curr. Anal. Chem., 2018, 14, 198-202.
[http://dx.doi.org/10.2174/1573411013666171009163829]
[19]
Sadeghifar, H.; Bijad, M.; Taher, M.A.; Cheraghi, S. A review: Stripping voltammetric methods as a high sensitive strategy for trace analysis of ions, pharmaceutical and food samples. Curr. Anal. Chem., 2017, 13, 5-12.
[20]
Cable, R.E.; Schaak, R.E. Solution synthesis of nanocrystalline M-Zn (M: Pd, Au, Cu) intermetallic compounds via chemical conversion of metal nanoparticle precursors. Chem. Mater., 2007, 38, 4098-4104.
[http://dx.doi.org/10.1021/cm071214j]
[21]
Snyder, J.; Asanithi, P.; Dalton, A.B.; Erlebacher, J. Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater., 2010, 20, 4883-4886.
[http://dx.doi.org/10.1002/adma.200702760]
[22]
Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem., 2010, 119, 4138-4141.
[http://dx.doi.org/10.1002/ange.200700894]
[23]
Kuai, L.; Geng, B.; Wang, S.; Sang, Y. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Chemistry, 2012, 18(30), 9423-9429.
[http://dx.doi.org/10.1002/chem.201200893] [PMID: 22714952]
[24]
He, W.; Wu, X.; Liu, J.; Hu, X.; Zhang, K.; Hou, S.; Zhou, W.; Xie, S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater., 2010, 22, 2988-2994.
[http://dx.doi.org/10.1021/cm100393v]
[25]
Zhang, X.; Wang, G.; Gu, A.; Wei, Y.; Fang, B. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chem. Commun. (Camb.), 2008, 45(45), 5945-5947.
[http://dx.doi.org/10.1039/b814725f] [PMID: 19030547]
[26]
Wang, G.; Gu, A.; Wang, W.; Wei, Y.; Wu, J.; Wang, G.; Zhang, X.; Fang, B. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection. Electrochem. Commun., 2009, 11, 631-634.
[http://dx.doi.org/10.1016/j.elecom.2008.12.061]
[27]
Ko, F.H.; Tai, M.R.; Liu, F.K.; Chang, Y.C. Au-Ag core-shell nanoparticles with controllable shell thicknesses for the detection of adenosine by surface enhanced Raman scattering. Sens. Actuators B Chem., 2015, 211, 283-289.
[http://dx.doi.org/10.1016/j.snb.2015.01.047]
[28]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[29]
Yang, X.; Wang, Y.; Liu, Y.; Jiang, X. A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core-shell nanorods. Electrochim. Acta, 2013, 108, 39-44.
[http://dx.doi.org/10.1016/j.electacta.2013.06.017]
[30]
Manivannan, S.; Ramaraj, R. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide. J. Chem. Sci., 2009, 121, 735-743.
[http://dx.doi.org/10.1007/s12039-009-0088-6]
[31]
Filik, H.; Aydar, S.; Avan, A.A.H. Voltammetric sensing of bilirubin based on nafion/electrochemically reduced graphene oxide composite modified glassy carbon electrode. Curr. Anal. Chem., 2015, 11, 96-103.
[http://dx.doi.org/10.2174/157341101102150223123009]
[32]
Koshy, O.; Pottathara, Y.B.; Thomas, S.; Petovar, B.; Finsgar, M. A flexible, disposable hydrogen peroxide sensor on graphene nanoplatelet-coated cellulose. Curr. Anal. Chem., 2017, 13, 1-8.
[http://dx.doi.org/10.2174/1573411013666170427121958]
[33]
Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7), 1487-1491.
[http://dx.doi.org/10.1021/nn800251f] [PMID: 19206319]
[34]
Li, B.; Zhang, X.; Li, X.; Wang, L.; Han, R.; Liu, B.; Zheng, W.; Li, X.; Liu, Y. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO(2) conductive thin film. Chem. Commun. (Camb.), 2010, 46(20), 3499-3501.
[http://dx.doi.org/10.1039/c002200d] [PMID: 20376387]
[35]
Rao, K.J.; Paria, S. Phytochemicals mediated synthesis of multifunctional Ag-Au-TiO2 heterostructure for photocatalytic and antimicrobial applications. J. Clean. Prod., 2017, 165, 360-368.
[http://dx.doi.org/10.1016/j.jclepro.2017.07.147]
[36]
Liu, R.; Li, S.; Yu, X.; Zhang, G.; Zhang, S.; Yao, J.; Keita, B.; Nadjo, L.; Zhi, L. Facile synthesis of Au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: an enzyme-free electrochemical biosensor for hydrogen peroxide. Small, 2012, 8(9), 1398-1406.
[http://dx.doi.org/10.1002/smll.201102298] [PMID: 22354818]
[37]
Cui, S.F.; Li, Y.; Deng, D.M.; Zeng, L.L.; Yan, X.X.; Qian, J.; Luo, L.Q. Photo-reduction assisted synthesis of MnO2/reduced graphene oxide/P25 for electrochemical detection of hydrogen peroxide. RSC Advances, 2015, 6, 2632-2640.
[http://dx.doi.org/10.1039/C5RA13275D]
[38]
Hong, M.; Xu, L.; Wang, F.; Xu, S.; Li, H.; Li, C.; Liu, J. In situ synthesized Au-Ag nanocages on graphene oxide nanosheets: a highly active and recyclable catalyst for the reduction of 4-nitrophenol. New J. Chem., 2016, 40, 1685-1692.
[http://dx.doi.org/10.1039/C5NJ02978C]
[39]
Zhang, X.; Su, Z. Polyelectrolyte-multilayer-supported Au@Ag core-shell nanoparticles with high catalytic activity. Adv. Mater., 2012, 24(33), 4574-4577.
[http://dx.doi.org/10.1002/adma.201201712] [PMID: 22806824]
[40]
Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett., 2008, 8(1), 36-41.
[http://dx.doi.org/10.1021/nl071822y] [PMID: 18154315]
[41]
Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97(18), 187401-187405.
[http://dx.doi.org/10.1103/PhysRevLett.97.187401] [PMID: 17155573]
[42]
Zhang, Y.; Tang, Z.R.; Fu, X.; Xu, Y.J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano, 2011, 5(9), 7426-7435.
[http://dx.doi.org/10.1021/nn202519j] [PMID: 21870826]
[43]
Zhang, Y.; Wang, Z.; Ji, Y.; Liu, S.; Zhang, T. Synthesis of Ag nanoparticle-carbon nanotube-reduced graphene oxide hybrids for highly sensitive non-enzymatic hydrogen peroxide detection. RSC Advances, 2015, 5, 39037-39041.
[http://dx.doi.org/10.1039/C5RA04246A]
[44]
Li, Y.; Zhang, Y.; Zhong, Y.; Li, S. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites. Appl. Surf. Sci., 2015, 347, 428-434.
[http://dx.doi.org/10.1016/j.apsusc.2015.04.102]
[45]
Wang, L.; Wang, F.; Shang, L.; Zhu, C.; Ren, W.; Dong, S. AuAg bimetallic nanoparticles film fabricated based on H2O2-mediated silver reduction and its application. Talanta, 2010, 82(1), 113-117.
[http://dx.doi.org/10.1016/j.talanta.2010.04.009] [PMID: 20685444]
[46]
Li, D.; Meng, L.; Dang, S.; Jiang, D.; Shi, W. Hydrogen peroxide sensing using Cu2O nanocubes decorated by Ag-Au alloy nanoparticles. J. Alloys Compd., 2017, 690, 1-7.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.108]
[47]
Yadav, D.K.; Gupta, R.; Ganesan, V.; Sonkar, P.K.; Rastogi, P.K. Electrochemical sensing platform for hydrogen peroxide determination at low reduction potential using silver nanoparticle-incorporated bentonite clay. J. Appl. Electrochem., 2016, 46, 103-112.
[http://dx.doi.org/10.1007/s10800-015-0904-2]
[48]
Chen, T.; Tian, L.; Chen, Y.; Liu, B.; Zhang, J. A facile one-pot Synthesis of Au/Cu2O nanocomposites for nonenzymatic detection of hydrogen peroxide. Nanoscale Res. Lett., 2015, 10(1), 935.
[http://dx.doi.org/10.1186/s11671-015-0935-y] [PMID: 26058508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy