Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Spatiotemporal Statistical Shape Model for Temporal Shape Change Analysis of Adult Brain

Author(s): Saadia Binte Alam*, Manabu Nii, Akinobu Shimizu and Syoji Kobashi

Volume 16, Issue 5, 2020

Page: [499 - 506] Pages: 8

DOI: 10.2174/1573405615666181120141147

Price: $65

Abstract

Background: This study presents a novel method of constructing a spatiotemporal statistical shape model (st-SSM) for adult brain. St-SSM is an extension of statistical shape model (SSM) in the temporal domain which will represent the statistical variability of shape as well as the temporal change of statistical variance with respect to time.

Aims: Expectation-Maximization (EM) based weighted principal component analysis (WPCA) using a temporal weight function is applied where the eigenvalues of each data are estimated by Estep using temporal eigenvectors, and M-step updates Eigenvectors in order to maximize the variance. Both E and M-step are iterated until updating vectors reaches the convergence point. A weight parameter for each subject is allocated in accordance with the subject’s age to calculate the weighted variance. A Gaussian function is utilized to define the weight function. The center of the function is a time point while the variance is a predefined parameter.

Methods: The proposed method constructs adult brain st-SSM by changing the time point between minimum to maximum age range with a small interval. Here, the eigenvectors changes with aging. The feature vector of representing adult brain shape is extracted through a level set algorithm. To validate the method, this study employed 103 adult subjects (age: 22 to 93 y.o. with Mean ± SD = 59.32±16.89) from OASIS database. st-SSM was constructed for time point 40 to 90 with a step of 2.

Results: We calculated the temporal deformation change between two-time points and evaluated the corresponding difference to investigate the influence of analysis parameter. An application of the proposed model is also introduced which involves Alzheimer’s disease (AD) identification utilizing support vector machine.

Conclusion: In this study, st-SSM based adult brain shape feature extraction and classification techniques are introduced to classify between normal and AD subject as an application.

Keywords: Spatiotemporal statistical shape model, brain, magnetic resonance imaging, shape analysis, age, Alzheimer's disease identification.

Graphical Abstract

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Davila D, Antoniou A, Chaudhry MA. Evaluation of osseous metastasis in bone scintigraphy. Semin Nucl Med 2015; 45(1): 3-15.
[http://dx.doi.org/10.1053/j.semnuclmed.2014.07.004] [PMID: 25475375]
[3]
Löfgren J, Mortensen J, Rasmussen SH, et al. A Prospective study comparing 99mTc-Hydroxyethylene-Diphosphonate planar bone scintigraphy and whole-body SPECT/CT with 18F-Fluoride PET/CT and 18F-Fluoride PET/MRI for diagnosing bone metastases. J Nucl Med 2017; 58(11): 1778-85.
[http://dx.doi.org/10.2967/jnumed.116.189183] [PMID: 28798033]
[4]
Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12(20 Pt 2): 6243s-9s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0931] [PMID: 17062708]
[5]
Iagaru A, Minamimoto R. Nuclear medicine imaging techniques for detection of skeletal metastases in breast cancer. PET Clin 2018; 13(3): 383-93.
[http://dx.doi.org/10.1016/j.cpet.2018.02.002] [PMID: 30100077]
[6]
Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005; 46(8): 1356-67.
[PMID: 16085595]
[7]
Fonager RF, Zacho HD, Langkilde NC, et al. Diagnostic test accuracy study of 18F-sodium fluoride PET/CT, 99mTc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer. Am J Nucl Med Mol Imaging 2017; 7(5): 218-27.
[PMID: 29181269]
[8]
Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 2013; 31(4): 262-9.
[http://dx.doi.org/10.1007/s11604-013-0179-7] [PMID: 23377765]
[9]
Chen XL, Li Q, Cao L, Jiang SX. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases. Int J Clin Exp Med 2014; 7(12): 5336-41.
[PMID: 25664040]
[10]
Sharma P, Dhull VS, Reddy RM, et al. Hybrid SPECT-CT for characterizing isolated vertebral lesions observed by bone scintigraphy: comparison with planar scintigraphy, SPECT, and CT. Diagn Interv Radiol 2013; 19(1): 33-40.
[PMID: 22865157]
[11]
Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 2001; 45(1): 53-64.
[PMID: 11456376]
[12]
O’Mara RE. Skeletal scanning in neoplastic disease. Cancer 1976; 37(1): 480-6.
[PMID: 1247979]
[13]
Rosenthal DI. Radiologic diagnosis of bone metastases. Cancer 1997; 80(8): 1595-607.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19971015)80:8+<1595:AID-CNCR10>3.0.CO;2-V] [PMID: 9362427]
[14]
Lee YT. Bone scanning in patients with early breast carcinoma: should it be a routine staging procedure? Cancer 1981; 47(3): 486-95.
[http://dx.doi.org/10.1002/1097-0142(19810201)47:3<486:AID-CNCR2820470311>3.0.CO;2-U] [PMID: 6261910]
[15]
Coleman RE, Rubens RD, Fogelman I. Reappraisal of the baseline bone scan in breast cancer. J Nucl Med 1988; 29(6): 1045-9.
[PMID: 3373314]
[16]
Dershaw DD, Osborne M. Imaging techniques in breast cancer. Semin Surg Oncol 1989; 5(2): 82-93.
[http://dx.doi.org/10.1002/ssu.2980050204] [PMID: 2657974]
[17]
Reinartz P, Schaffeldt J, Sabri O, et al. Benign versus malignant osseous lesions in the lumbar vertebrae: differentiation by means of bone SPET. Eur J Nucl Med 2000; 27(6): 721-6.
[http://dx.doi.org/10.1007/s002590050568] [PMID: 10901460]
[18]
Rahman MH, Ali MY, Ahmed SAM. The role of SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. Faridpur Med Coll J 2013; 8(1): 31-3.
[http://dx.doi.org/10.3329/fmcj.v8i1.16895]
[19]
Ben-Haim S, Israel O. Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 2009; 39(6): 408-15.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.05.002] [PMID: 19801220]
[20]
Ghosh P. The role of SPECT/CT in skeletal malignancies. Semin Musculoskelet Radiol 2014; 18(2): 175-93.
[http://dx.doi.org/10.1055/s-0034-1371019] [PMID: 24715449]
[21]
Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 2016; 55(1): 59-67.
[http://dx.doi.org/10.3109/0284186X.2015.1027411] [PMID: 25833330]
[22]
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47(2): 287-97.
[PMID: 16455635]
[23]
Kobayashi K, Okuyama C, Kubota T, Nakai T, Ushijima Y, Nishimura T. Do short-time SPECT images of bone scintigraphy improve the diagnostic value in the evaluation of solitary lesions in the thoracic spine in patients with extraskeletal malignancies? Ann Nucl Med 2005; 19(7): 557-66.
[http://dx.doi.org/10.1007/BF02985048] [PMID: 16363620]
[24]
Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med 2006; 36(4): 286-94.
[http://dx.doi.org/10.1053/j.semnuclmed.2006.05.001] [PMID: 16950146]
[25]
Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol 2001; 11(10): 1968-74.
[http://dx.doi.org/10.1007/s003300101007] [PMID: 11702130]
[26]
Nömayr A, Römer W, Strobel D, Bautz W, Kuwert T. Anatomical accuracy of hybrid SPECT/spiral CT in the lower spine. Nucl Med Commun 2006; 27(6): 521-8.
[http://dx.doi.org/10.1097/00006231-200606000-00008] [PMID: 16710107]
[27]
Palmedo H, Marx C, Ebert A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 2014; 41(1): 59-67.
[http://dx.doi.org/10.1007/s00259-013-2532-6] [PMID: 23974666]
[28]
Guezennec C, Keromnes N, Robin P, et al. Incremental diagnostic utility of systematic double-bed SPECT/CT for bone scintigraphy in initial staging of cancer patients. Cancer Imaging 2017; 17(1): 16.
[http://dx.doi.org/10.1186/s40644-017-0118-4] [PMID: 28592305]
[29]
Storto G, Gallicchio R, Pellegrino T, et al. Impact of 18F-fluoride PET-CT on implementing early treatment of painful bone metastases with Sm-153 EDTMP. Nucl Med Biol 2013; 40(4): 518-23.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.02.009] [PMID: 23522973]
[30]
Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 2014; 43(11): 1503-13.
[http://dx.doi.org/10.1007/s00256-014-1903-9] [PMID: 24841276]
[31]
Nozaki T, Yasuda K, Akashi T, Fuse H. Usefulness of single photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol 2008; 15(6): 516-9.
[http://dx.doi.org/10.1111/j.1442-2042.2008.02028.x] [PMID: 18422581]
[32]
Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid imaging (SPECT/CT and PET/CT)--improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med 2009; 39(4): 264-75.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.03.004] [PMID: 19497403]
[33]
Utsunomiya D, Shiraishi S, Imuta M, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 2006; 238(1): 264-71.
[http://dx.doi.org/10.1148/radiol.2373041358] [PMID: 16304081]
[34]
Strobel K, Burger C, Seifert B, Husarik DB, Soyka JD, Hany TF. Characterization of focal bone lesions in the axial skeleton: performance of planar bone scintigraphy compared with SPECT and SPECT fused with CT. AJR Am J Roentgenol 2007; 188(5): W467-74.
[http://dx.doi.org/10.2214/AJR.06.1215] [PMID: 17449746]
[35]
Römer W, Nömayr A, Uder M, Bautz W, Kuwert T. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 2006; 47(7): 1102-6.
[PMID: 16818944]
[36]
Helyar V, Mohan HK, Barwick T, et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 2010; 37(4): 706-13.
[http://dx.doi.org/10.1007/s00259-009-1334-3] [PMID: 20016889]
[37]
Zhao Z, Li L, Li F, Zhao L. Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer. Skeletal Radiol 2010; 39(2): 147-53.
[http://dx.doi.org/10.1007/s00256-009-0764-0] [PMID: 19669135]
[38]
Sharma P, Kumar R, Singh H, et al. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT? Skeletal Radiol 2012; 41(7): 843-50.
[http://dx.doi.org/10.1007/s00256-011-1304-2] [PMID: 22002100]
[39]
Waldman LE, Scharf SC. Bone SPECT/CT of the Spine, Foot, and Ankle: Evaluation of Surgical Patients. Semin Nucl Med 2017; 47(6): 639-46.
[http://dx.doi.org/10.1053/j.semnuclmed.2017.07.007] [PMID: 28969762]
[40]
Ndlovu X, George R, Ellmann A, Warwick J. Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun 2010; 31(7): 659-65.
[http://dx.doi.org/10.1097/MNM.0b013e3283399107] [PMID: 20395878]
[41]
Horger M, Eschmann SM, Pfannenberg C, et al. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol 2004; 183(3): 655-61.
[http://dx.doi.org/10.2214/ajr.183.3.1830655] [PMID: 15333352]
[42]
Rager O, Nkoulou R, Exquis N, et al. Whole-Body SPECT/CT versus Planar Bone Scan with Targeted SPECT/CT for Metastatic Workup. BioMed Res Int 2017; 2017 7039406
[http://dx.doi.org/10.1155/2017/7039406] [PMID: 28812019]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy