Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Extraction Methods for Obtaining Natural Blue Colorants

Author(s): Juliana M. Prado*, Priscilla C. Veggi, Grazielle Náthia-Neves and M. Angela A. Meireles

Volume 16, Issue 5, 2020

Page: [504 - 532] Pages: 29

DOI: 10.2174/1573411014666181115125740

Abstract

Background: Blue is a color not often present in food. Even so, it is especially attractive to children. Today, most blue coloring agents used by the food industry are synthetic. With increasing health issues concern by the scientific community and the general population, there is a trend to look for natural alternatives to most synthetic products. There only exist few natural blue colorants, which are presented in a literature survey, along with the methods currently used for their recovery from natural sources. The best extraction methods and process parameters for the extraction of blue anthocyanins, iridoids and phycocyanin are discussed.

Methods: A literature survey was conducted to detect the main sources of blue colorants found in nature. The focus was on the extraction methods used to recover such molecules, with the objective of finding efficient and environmentally safe techniques for application at industrial level, and, thus, allowing the production of natural blue colorants at scale high enough for food industry consumption.

Results: The main natural blue colorants found in literature are anthocyanins, phycocyanin, and genipin. While anthocyanins can be recovered from a variety of plants, the source of phycocyanin are algae, and genipin can be obtained specifically from Gardenia jasminoides Ellis and Genipa americana L. Several extraction techniques have been applied to recover blue colorants from such sources, from classical methods using organic solvents, to more sophisticated technologies as ultrasoundassisted extraction, supercritical fluid extraction, pressurized liquid extraction, high-pressure extraction, and enzyme-assisted extraction.

Conclusion: There is great potential for anthocyanins, phycocyanin and genipin use as natural food additives with health benefits, besides imparting color. However, the technologies for the colorants recovery and application are not mature enough. Therefore, this area is still developing, and it is necessary to evaluate the economic feasibility of the proposed extraction processes, along with the safety and acceptance of colored food using these additives.

Keywords: Anthocyanins, blue colorants, extraction, iridoids, phycocyanin, natural food additives.

Graphical Abstract

[1]
Náthia-Neves, G.; Meireles, M.A.A. Genipap: A new perspective on natural colorants for the food industry. Food Public Health, 2018, 8(1), 21-33.
[2]
Hirunpanich, V.; Utaipat, A.; Morales, N.P.; Bunyapraphatsara, N.; Sato, H.; Herunsale, A.; Suthisisang, C. Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of Hibiscus sabdariffa L. in hypercholesterolemic rats. J. Ethnopharmacol., 2006, 103(2), 252-260.
[http://dx.doi.org/10.1016/j.jep.2005.08.033] [PMID: 16213683]
[3]
Sigurdson, G.T.; Giusti, M.M. Bathochromic and hyperchromic effects of aluminum salt complexation by anthocyanins from edible sources for blue color development. J. Agric. Food Chem., 2014, 62(29), 6955-6965.
[http://dx.doi.org/10.1021/jf405145r] [PMID: 24547952]
[4]
Cortez, R.; Luna-Vital, D.A.; Margulis, D.; Gonzalez de Mejia, E. Natural Pigments: stabilization methods of anthocyanins for food applications. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 180-198.
[http://dx.doi.org/10.1111/1541-4337.12244]
[5]
Buchweitz, M. Natural Solutions for Blue Colors in Food. Handbook on Natural Pigments in Food and Beverages; Reinhold, C; Schweiggert, R.M., Ed.; Woodhead Publishing, 2016, pp. 355-384.
[http://dx.doi.org/10.1016/B978-0-08-100371-8.00017-8]
[6]
Yoshida, K.; Mori, M.; Kondo, T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rep., 2009, 26(7), 884-915.
[http://dx.doi.org/10.1039/b800165k] [PMID: 19554240]
[7]
Moreschi, S.; Leal, J.; Braga, M.; Meireles, M. Ginger and turmeric starches hydrolysis using subcritical water+ CO2: the effect of the SFE pre-treatment. Braz. J. Chem. Eng., 2006, 23(2), 235-242.
[http://dx.doi.org/10.1590/S0104-66322006000200011]
[8]
Aberoumand, A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J. Dairy Food Sci., 2011, 6(1), 71-78.
[9]
Veggi, P.C.; Prado, J.M.; Bataglion, G.A.; Eberlin, M.N.; Meireles, M.A.A. Obtaining phenolic compounds from jatoba (Hymenaea courbaril L.) bark by supercritical fluid extraction. J. Supercrit. Fluids, 2014, 89, 68-77.
[http://dx.doi.org/10.1016/j.supflu.2014.02.016]
[10]
Delgado-Vargas, F.; Paredes-López, O. Natural Colorants for Food and Nutraceutical Uses; CRC Press, 2002.
[http://dx.doi.org/10.1201/9781420031713]
[11]
Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural pigments: carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr., 2000, 40(3), 173-289.
[http://dx.doi.org/10.1080/10408690091189257] [PMID: 10850526]
[12]
Newsome, A.G.; Culver, C.A.; van Breemen, R.B. Nature’s palette: The search for natural blue colorants. J. Agric. Food Chem., 2014, 62(28), 6498-6511.
[http://dx.doi.org/10.1021/jf501419q] [PMID: 24930897]
[13]
Buchweitz, M.; Carle, R.; Kammerer, D.R. Bathochromic and stabilising effects of sugar beet pectin and an isolated pectic fraction on anthocyanins exhibiting pyrogallol and catechol moieties. Food Chem., 2012, 135(4), 3010-3019.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.101] [PMID: 22980904]
[14]
Vankar, P.S.; Srivastava, J. Evaluation of anthocyanin content in red and blue flowers. Int. J. Food Eng., 2010, 6(4), 1.
[http://dx.doi.org/10.2202/1556-3758.1907]
[15]
Nardi, E.P.; Evangelista, F.S.; Tormen, L.; Saint, T.D.; Curtius, A.J.; de Souza, S.S.; Barbosa, F. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem., 2009, 112(3), 727-732.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.010]
[16]
Gualtieri, P.; Barsanti, L. Algae: Anatomy, biochemistry, and biotechnology; CRC Press, 2006, p. 301.
[17]
Oyama, K.; Yamada, T.; Ito, D.; Kondo, T.; Yoshida, K. Metal complex pigment involved in the blue sepal color development of hydrangea. J. Agric. Food Chem., 2015, 63(35), 7630-7635.
[http://dx.doi.org/10.1021/acs.jafc.5b02368] [PMID: 26006163]
[18]
Glazer, A.N. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem., 1985, 14(1), 47-77.
[http://dx.doi.org/10.1146/annurev.bb.14.060185.000403] [PMID: 3924069]
[19]
Prado, J.M.; Veggi, P.C.; Meireles, M.A.A. Extraction methods for obtaining carotenoids from vegetables-review. Curr. Anal. Chem., 2014, 10(1), 29-66.
[http://dx.doi.org/10.2174/1573411011410010005]
[20]
Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 2010, 1217(16), 2383-2389.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[21]
Renard, C.M.G.C. Extraction of bioactives from fruit and vegetables: State of the art and perspectives. Lebensm. Wiss. Technol., 2018, 93, 390-395.
[http://dx.doi.org/10.1016/j.lwt.2018.03.063]
[22]
Azwanida, N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 2015, 4(3), 3-8.
[23]
Soquetta, M.B.; Terra, L.M.; Bastos, C.P. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CYTA J. Food, 2018, 16(1), 400-412.
[http://dx.doi.org/10.1080/19476337.2017.1411978]
[24]
da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. Trends Analyt. Chem., 2016, 76, 40-51.
[http://dx.doi.org/10.1016/j.trac.2015.11.013]
[25]
Rostagno, M.A.; Prado, J.M. Natural Product Extraction: Principles and Applications; Royal Society of Chemistry, 2013.
[http://dx.doi.org/10.1039/9781849737579]
[26]
Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; García-Blairsy Reina, G.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Lebensm. Wiss. Technol., 2012, 46(1), 245-253.
[http://dx.doi.org/10.1016/j.lwt.2011.09.024]
[27]
Gadkari, P.V.; Balaraman, M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Process., 2015, 93, 122-138.
[http://dx.doi.org/10.1016/j.fbp.2013.12.004]
[28]
Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235.
[http://dx.doi.org/10.1016/j.tifs.2017.07.008]
[29]
Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry - A review. Innov. Food Sci. Emerg. Technol., 2008, 9(2), 161-169.
[http://dx.doi.org/10.1016/j.ifset.2007.04.014]
[30]
Ramos-de-la-Peña, A.M.; Renard, C.M.G.C.; Montañez, J.C.; Reyes-Vega, M.L.; Contreras-Esquivel, J.C. Ultrafiltration for genipin recovery technologies after ultrasonic treatment of genipap fruit. Biocatal. Agric. Biotechnol., 2015, 4(1), 11-16.
[http://dx.doi.org/10.1016/j.bcab.2014.09.009]
[31]
Silva, E.K.; Rosa, M.T.M.G.; Meireles, M.A.A. Ultrasound-assisted formation of emulsions stabilized by biopolymers. Curr. Opin. Food Sci., 2015, 5, 50-59.
[http://dx.doi.org/10.1016/j.cofs.2015.08.007]
[32]
Picó, Y. Ultrasound-assisted extraction for food and environmental samples. Trends Analyt. Chem., 2013, 43, 84-99.
[http://dx.doi.org/10.1016/j.trac.2012.12.005]
[33]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[34]
Ivanovs, K.; Blumberga, D. Extraction of fish oil using green extraction methods: A short review. Energy Procedia, 2017, 128, 477-483.
[http://dx.doi.org/10.1016/j.egypro.2017.09.033]
[35]
Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci., in press
[http://dx.doi.org/10.1016/j.cofs.2017.11.012]
[36]
De Monte, C.; Carradori, S.; Granese, A.; Di Pierro, G.B.; Leonardo, C.; De Nunzio, C. Modern extraction techniques and their impact on the pharmacological profile of Serenoa repens extracts for the treatment of lower urinary tract symptoms. BMC Urol., 2014, 14, 63-63.
[http://dx.doi.org/10.1186/1471-2490-14-63] [PMID: 25112532]
[37]
Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit. Rev. Food Sci. Nutr., 2017, 57(15), 3243-3259.
[http://dx.doi.org/10.1080/10408398.2015.1109498] [PMID: 26517806]
[38]
Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem., 2018, 240, 90-103.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.099] [PMID: 28946359]
[39]
Brunner, G. Supercritical fluids: technology and application to food processing. J. Food Eng., 2005, 67(1), 21-33.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.05.060]
[40]
Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B.K.; Vorobiev, E.; Lebovka, N.; Barba, F.J. Application of Non-conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev., 2015, 8(2), 214-234.
[http://dx.doi.org/10.1007/s12393-015-9131-1]
[41]
Zabot, G.L.; Moraes, M.N.; Meireles, M.A.A. Supercritical technology applied to the production of bioactive compounds: research studies conducted at LASEFI from 2009 to 2013. Food Public Health, 2014, 4(2), 36-48.
[http://dx.doi.org/10.5923/j.fph.20140402.04]
[42]
Prado, J.M.; Veggi, P.C.; Meireles, M.A.A. Scale-Up Issues and Cost of Manufacturing Bioactive Compounds by Supercritical Fluid Extraction and Ultrasound Assisted Extraction. Global Food Security and Wellness;; Barbosa-Cánovas, G.V.; María Pastore, G.; Candoğan, K.; Medina Meza, I.G.; Caetano da Silva Lannes, S.; Buckle, K.; Yada, R.Y.; Rosenthal, A., Eds.; Springer New York: New York, NY, 2017, pp. 377-433.
[http://dx.doi.org/10.1007/978-1-4939-6496-3_20]
[43]
Veggi, P.C. Obtaining phenolic compounds from Brazilian plants via supercritical technology using cosolvents and ultrasound assisted extraction; University of Campinas: Campinas, SP, 2013.
[44]
Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol., 2017, 41, 357-377.
[http://dx.doi.org/10.1016/j.ifset.2017.04.016]
[45]
Viganó, J.; Machado, A.P.F.; Martínez, J. Sub- and supercritical fluid technology applied to food waste processing. J. Supercrit. Fluids, 2015, 96, 272-286.
[http://dx.doi.org/10.1016/j.supflu.2014.09.026]
[46]
Zulkafli, Z.D.; Wang, H.; Miyashita, F.; Utsumi, N.; Tamura, K. Cosolvent-modified supercritical carbon dioxide extraction of phenolic compounds from bamboo leaves (Sasa palmata). J. Supercrit. Fluids, 2014, 94, 123-129.
[http://dx.doi.org/10.1016/j.supflu.2014.07.008]
[47]
Subedi, B.; Aguilar, L.; Robinson, E.M.; Hageman, K.J.; Björklund, E.; Sheesley, R.J.; Usenko, S. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. Trends Analyt. Chem., 2015, 68, 119-132.
[http://dx.doi.org/10.1016/j.trac.2015.02.011]
[48]
AlcÁZar-Alay, S. C.; Cardenas-Toro, F. P.; Osorio-TobÓN, J. F.; Barbero, G. F.; Meireles, M. A. d. A. Obtaining anthocyanin-rich extracts from frozen açai (Euterpe oleracea Mart.) pulp using pressurized liquid extraction. Food Sci. Technol. (Campinas), 2017, 37(Suppl. 1), 48-54.
[http://dx.doi.org/10.1590/1678-457x.33016]
[49]
Esquivel-Hernández, D.A.; Ibarra-Garza, I.P.; Rodríguez-Rodríguez, J.; Cuéllar-Bermúdez, S.P.; Rostro-Alanis, M.J.; Alemán-Nava, G.S.; García-Pérez, J.S.; Parra-Saldívar, R. Green extraction technologies for high-value metabolites from algae: A review. Biofuels Bioprod. Biorefin., 2017, 11(1), 215-231.
[http://dx.doi.org/10.1002/bbb.1735]
[50]
Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A technique for sample preparation. Anal. Chem., 1996, 68(6), 1033-1039.
[http://dx.doi.org/10.1021/ac9508199]
[51]
Osorio-Tobón, J.F.; Meireles, M.A.A. Recent applications of pressurized fluid extraction: curcuminoids extraction with pressurized liquids. Food Public Health, 2013, 3(6), 289-303.
[http://dx.doi.org/10.5923/j.fph.20130306.05]
[52]
Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta, 2011, 703(1), 8-18.
[http://dx.doi.org/10.1016/j.aca.2011.07.018] [PMID: 21843670]
[53]
Vazquez-Roig, P.; Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Trends Analyt. Chem., 2015, 71, 55-64.
[http://dx.doi.org/10.1016/j.trac.2015.04.014]
[54]
Osorio-Tobón, J.F.; Carvalho, P.I.N.; Rostagno, M.A.; Petenate, A.J.; Meireles, M.A.A. Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: Process integration and economic evaluation. J. Supercrit. Fluids, 2014, 95, 167-174.
[http://dx.doi.org/10.1016/j.supflu.2014.08.012]
[55]
Mazzutti, S.; Rodrigues, L.G.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated green-based processes using supercritical CO2 and pressurized ethanol applied to recover antioxidant compouds from cocoa (Theobroma cacao) bean hulls. J. Supercrit. Fluids, 2018, 135, 52-59.
[http://dx.doi.org/10.1016/j.supflu.2017.12.039]
[56]
Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Res. Int., 2015, 77, 675-683.
[http://dx.doi.org/10.1016/j.foodres.2014.12.042]
[57]
Osorio-Tobón, F.J.; Carvalho, P.I.N.; Rostagno, M.A.; Meireles, M.A.A. Process integration for turmeric products extraction using supercritical fluids and pressurized liquids: Economic evaluation. Food Bioprod. Process., 2016, 98, 227-235.
[http://dx.doi.org/10.1016/j.fbp.2016.02.001]
[58]
Náthia-Neves, G.; Tarone, A.G.; Tosi, M.M.; Maróstica Júnior, M.R.; Meireles, M.A.A. Extraction of bioactive compounds from genipap (Genipa americana L.) by pressurized ethanol: Iridoids, phenolic content and antioxidant activity. Food Res. Int., 2017, 102(Suppl. C), 595-604.
[http://dx.doi.org/10.1016/j.foodres.2017.09.041] [PMID: 29195990]
[59]
Rodrigues, L.M.; Alcázar-Alay, S.C.; Petenate, A.J.; Meireles, M.A.A. Bixin extraction from defatted annatto seeds. C. R. Chim., 2014, 17(3), 268-283.
[http://dx.doi.org/10.1016/j.crci.2013.10.010]
[60]
Garcia-Mendoza, M.P.; Espinosa-Pardo, F.A.; Baseggio, A.M.; Barbero, G.F.; Maróstica, M.R. Junior; Rostagno, M.A.; Martínez, J. Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. J. Supercrit. Fluids, 2017, 119, 9-16.
[http://dx.doi.org/10.1016/j.supflu.2016.08.014]
[61]
Wang, H.; Zhu, S.; Ramaswamy, H.S.; Hu, F.; Yu, Y. Effect of high pressure processing on rancidity of brown rice during storage. Lebensm. Wiss. Technol., 2018, 93, 405-411.
[http://dx.doi.org/10.1016/j.lwt.2018.03.042]
[62]
Jun, X. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 837-852.
[http://dx.doi.org/10.1080/10408398.2011.561380] [PMID: 23768146]
[63]
Putnik, P.; Kovačević, D.B.; Ježek, D.; Šustić, I.; Zorić, Z.; Dragović‐Uzelac, V. High‐pressure recovery of anthocyanins from grape skin pomace (Vitis vinifera cv. Teran) at moderate temperature. J. Food Process. Preserv., 2018, 42(1)e13342
[http://dx.doi.org/10.1111/jfpp.13342]
[64]
Muntean, M-V.; Marian, O.; Barbieru, V.; Cătunescu, G.M.; Ranta, O.; Drocas, I.; Terhes, S. High Pressure Processing in Food Industry - Characteristics and Applications. Agric. Agric. Sci. Procedia, 2016, 10, 377-383.
[http://dx.doi.org/10.1016/j.aaspro.2016.09.077]
[65]
Gharib-Bibalan, S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. Food Eng. Rev., 2018, 10(2), 95-111.
[http://dx.doi.org/10.1007/s12393-018-9174-1]
[66]
Morata, A.; Loira, I.; Vejarano, R.; González, C.; Callejo, M.J.; Suárez-Lepe, J.A. Emerging preservation technologies in grapes for winemaking. Trends Food Sci. Technol., 2017, 67, 36-43.
[http://dx.doi.org/10.1016/j.tifs.2017.06.014]
[67]
Martínez, M.A.; Velazquez, G.; Cando, D.; Núñez-Flores, R.; Borderías, A.J.; Moreno, H.M. Effects of high pressure processing on protein fractions of blue crab (Callinectes sapidus) meat. Innov. Food Sci. Emerg. Technol., 2017, 41, 323-329.
[http://dx.doi.org/10.1016/j.ifset.2017.04.010]
[68]
Polydera, A.C.; Stoforos, N.G.; Taoukis, P.S. Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J. Food Eng., 2003, 60(1), 21-29.
[http://dx.doi.org/10.1016/S0260-8774(03)00006-2]
[69]
Krebbers, B.; Matser, A.M.; Koets, M.; Van den Berg, R.W. Quality and storage-stability of high-pressure preserved green beans. J. Food Eng., 2002, 54(1), 27-33.
[http://dx.doi.org/10.1016/S0260-8774(01)00182-0]
[70]
Sadus, R.J. High pressure phase behaviour of multicomponent fluid mixtures; Elsevier, 2012.
[71]
Ramos-de-la-Peña, A.M.; Montañez, J.C.; Reyes-Vega, M.L.; Hendrickx, M.E.; Contreras-Esquivel, J.C. Recovery of genipin from genipap fruit by high pressure processing. Lebensm. Wiss. Technol., 2015, 63(2), 1347-1350.
[http://dx.doi.org/10.1016/j.lwt.2015.04.038]
[72]
Pinela, J.; Prieto, M.A.; Barros, L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Saraiva, J.A.; Ferreira, I.C.F.R. Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Separ. Purif. Tech., 2018, 192, 501-512.
[http://dx.doi.org/10.1016/j.seppur.2017.10.007]
[73]
George, J.M.; Senthamizh Selvan, T.; Rastogi, N.K. High-pressure-assisted infusion of bioactive compounds in apple slices. Innov. Food Sci. Emerg. Technol., 2016, 33, 100-107.
[http://dx.doi.org/10.1016/j.ifset.2015.11.010]
[74]
Andrés, V.; Mateo-Vivaracho, L.; Guillamón, E.; Villanueva, M.J.; Tenorio, M.D. High hydrostatic pressure treatment and storage of soy-smoothies: Colour, bioactive compounds and antioxidant capacity. Lebensm. Wiss. Technol., 2016, 69, 123-130.
[http://dx.doi.org/10.1016/j.lwt.2016.01.033]
[75]
Khalil, H.; Lai, T.; Tye, Y.; Rizal, S.; Chong, E.; Yap, S.; Hamzah, A.; Fazita, M.; Paridah, M. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym. Lett., 2018, 12(4), 296-317.
[http://dx.doi.org/10.3144/expresspolymlett.2018.27]
[76]
Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int., 2018, 108, 309-330.
[http://dx.doi.org/10.1016/j.foodres.2018.03.006] [PMID: 29735063]
[77]
Kumar, S.P.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J., 2017, 11(1), 9.
[http://dx.doi.org/10.1186/s13065-017-0238-8] [PMID: 28123451]
[78]
Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol., 2012, 30(1), 37-44.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.014] [PMID: 21816495]
[79]
Harborne, J.B.; Williams, C.A. Anthocyanins and other flavonoids. Nat. Prod. Rep., 2001, 18(3), 310-333.
[http://dx.doi.org/10.1039/b006257j] [PMID: 11476484]
[80]
Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1)1361779
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[81]
Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Dębski, H. Anthocyanins of Fruits and Vegetables - Their Occurrence, Analysis and Role in Human Nutrition. Vegetable Crops Research Bulletin, 2008, 68(1), 5-22.
[http://dx.doi.org/10.2478/v10032-008-0001-8]
[82]
Miguel, M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci., 2011, 1(6), 7-15.
[83]
Pervaiz, T.; Songtao, J.; Faghihi, F.; Haider, M.S.; Fang, J. Naturally Occurring Anthocyanin, Structure, Functions and Biosynthetic Pathway in Fruit Plants. J. Plant Biochem. Physiol., 2017, 05(02)
[http://dx.doi.org/10.4172/2329-9029.1000187]
[84]
Islam, S. Anthocyanin Compositions in Different Colored Gladiolus Species: A Source of Natural Food Colorants. American Journal of Food Science and Technology, 2016, 4(4), 109-114.
[85]
Mazza, G.; Kay, C.D.; Cottrell, T.; Holub, B.J. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agric. Food Chem., 2002, 50(26), 7731-7737.
[http://dx.doi.org/10.1021/jf020690l] [PMID: 12475297]
[86]
Raghvendra; Sharma, V.; Shakya, A.; Hedaytullah, M. D.; Arya, G. S.; Mishra, A.; Gupta, A. D.; Pachpute, A. P.; Patel, D., Chemical and potential aspects of anthocyanins - A water-soluble vacuolar flavonoid pigments: A review. Int. J. Pharm. Sci. Rev. Res., 2011, 6(1), 28-33.
[87]
Krüger, S.; Morlock, G.E. Fingerprinting and characterization of anthocyanins in 94 colored wheat varieties and blue aleurone and purple pericarp wheat crosses. J. Chromatogr. A, 2018, 1538, 75-85.
[http://dx.doi.org/10.1016/j.chroma.2018.01.032] [PMID: 29397987]
[88]
Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res., 1998, 18(12), 1995-2018.
[http://dx.doi.org/10.1016/S0271-5317(98)00169-9]
[89]
Mazza, G.J. Anthocyanins and heart health. Ann. Ist. Super. Sanita, 2007, 43(4), 369-374.
[PMID: 18209270]
[90]
He, J.; Giusti, M.M. Anthocyanins: natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol., 2010, 1, 163-187.
[http://dx.doi.org/10.1146/annurev.food.080708.100754] [PMID: 22129334]
[91]
Pojer, E.; Fulvio, M.; Dan, J.C.S. S., The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf., 2013, 12(5), 483-508.
[http://dx.doi.org/10.1111/1541-4337.12024]
[92]
Song, N.R.; Yang, H.; Park, J.; Kwon, J.Y.; Kang, N.J.; Heo, Y.S.; Lee, K.W.; Lee, H.J. Cyanidin suppresses neoplastic cell transformation by directly targeting phosphatidylinositol 3-kinase. Food Chem., 2012, 133(3), 658-664.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.045]
[93]
Lim, S.; Xu, J.; Kim, J.; Chen, T-Y.; Su, X.; Standard, J.; Carey, E.; Griffin, J.; Herndon, B.; Katz, B.; Tomich, J.; Wang, W. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol. Nutr. Food Res., 2013, 57(11), 1908-1917.
[http://dx.doi.org/10.1002/mnfr.201300040] [PMID: 23784800]
[94]
Castelli, W.P. The new pathophysiology of coronary artery disease. Am. J. Cardiol., 1998, 82(10B), 60T-65T.
[http://dx.doi.org/10.1016/S0002-9149(98)00729-2] [PMID: 9860378]
[95]
Kaplan, M.; Aviram, M. Oxidized low density lipoprotein: atherogenic and proinflammatory characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase. Clin. Chem. Lab. Med (CCLM), 1999, 37(8), 777-787.
[http://dx.doi.org/10.1515/CCLM.1999.118] [PMID: 10536926]
[96]
Azevedo, L.; Alves de Lima, P.L.; Gomes, J.C.; Stringheta, P.C.; Ribeiro, D.A.; Salvadori, D.M.F. Differential response related to genotoxicity between eggplant (Solanum melanogena) skin aqueous extract and its main purified anthocyanin (delphinidin) in vivo. Food Chem. Toxicol., 2007, 45(5), 852-858.
[http://dx.doi.org/10.1016/j.fct.2006.11.004] [PMID: 17194516]
[97]
Roewer, N.; Broscheit, J. Delphinidin complex as an antiphlogistic or immunosuppressive active ingredient, US9925274. 2013.
[98]
Roewer, N.; Broscheit, J. Delphinidin for combating melanoma cells, WO/2014/090583. 2013.
[99]
Lamy, S.; Blanchette, M.; Michaud-Levesque, J.; Lafleur, R.; Durocher, Y.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis, 2006, 27(5), 989-996.
[http://dx.doi.org/10.1093/carcin/bgi279] [PMID: 16308314]
[100]
Andersen, Ø.M.; Jordheim, M. In Anthocyanins—food applications, 14-16 Aug. 2008.
[101]
Harborne, J.B. Phenolic compounds. In: Phytochemical methods : a guide to modern techniques of plant analysis, 2nd ed; Harborne, J.B., Ed.; New York: Chapman and Hall: London, 1998; p. 8.
[102]
Harborne, J.B. The Flavonoids: Advances in Research since 1980; Springer US. , 2013.
[103]
Katsumoto, Y.; Fukuchi-Mizutani, M.; Fukui, Y.; Brugliera, F.; Holton, T.A.; Karan, M.; Nakamura, N.; Yonekura-Sakakibara, K.; Togami, J.; Pigeaire, A.; Tao, G.Q.; Nehra, N.S.; Lu, C.Y.; Dyson, B.K.; Tsuda, S.; Ashikari, T.; Kusumi, T.; Mason, J.G.; Tanaka, Y. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol., 2007, 48(11), 1589-1600.
[http://dx.doi.org/10.1093/pcp/pcm131] [PMID: 17925311]
[104]
Mazza, G.; Miniati, E. Anthocyanins in Fruits, Vegetables, and Grains; CRC Press: Boca Raton, FL, 1993.
[105]
Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev., 2016, 116(9), 4937-4982.
[http://dx.doi.org/10.1021/acs.chemrev.5b00507] [PMID: 26959943]
[106]
Momonoi, K.; Yoshida, K.; Mano, S.; Takahashi, H.; Nakamori, C.; Shoji, K.; Nitta, A.; Nishimura, M. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J., 2009, 59(3), 437-447.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03879.x] [PMID: 19366427]
[107]
Kondo, T.; Ueda, M.; Isobe, M.; Goto, T. A New Molecular Mechanism of Blue Color Development with Protocyanin, a Supramolecular Pigment from Cornflower, Centaurea cyanus. Tetrahedron Lett., 1998, 39, 8307-8310.
[http://dx.doi.org/10.1016/S0040-4039(98)01858-9]
[108]
Ahmadiani, N. Anthocyanin based blue colorants; Ohio State University, 2012.
[109]
Shiono, M.; Matsugaki, N.; Takeda, K. Phytochemistry: structure of the blue cornflower pigment. Nature, 2005, 436(7052), 791.
[http://dx.doi.org/10.1038/436791a] [PMID: 16094358]
[110]
Yoshida, K.; Oyama, K-I.; Kondo, T. Chemistry of flavonoids in color development.Recent Advances in Polyphenol Research; Cheynier, V.; Sarni-Manchado, P; Quideau, S., Ed.; Wiley: Chichester, UK, 2012, Vol. 3, pp. 99-129.
[http://dx.doi.org/10.1002/9781118299753.ch4]
[111]
Takeda, K. In: Blue metal complex pigments involved in blue flower color Proceedings of the Japan Academy Ser B Physical and Biological Sciences; , 2006; pp. 142-154.
[http://dx.doi.org/10.2183/pjab.82.142]
[112]
Mori, M.; Kondo, T.; Yoshida, K. Cyanosalvianin, a supramolecular blue metalloanthocyanin, from petals of Salvia uliginosa. Phytochemistry, 2008, 69(18), 3151-3158.
[http://dx.doi.org/10.1016/j.phytochem.2008.03.015] [PMID: 18466933]
[113]
Kondo, T.; Oyama, K.; Yoshida, K. Chiral Molecular Recognition on Formation of a Metalloanthocyanin: A Supramolecular Metal Complex Pigment from Blue Flowers of Salvia patens. Angew. Chem. Int. Ed., 2001, 40(5), 894-897.
[http://dx.doi.org/10.1002/1521-3773(20010302)40:5<894:AID-ANIE894>3.0.CO;2-8]
[114]
Kondo, T.; Yoshida, K.; Nakagawa, A.; Kawai, T.; Tamura, H.; Goto, T. Structural basis of blue-colour development in flower petals from Commelina communis. Nature, 1992, 358, 515-518.
[http://dx.doi.org/10.1038/358515a0]
[115]
Kumoro, A.C.; Retnowati, D.S.; Budiyati, C.S. Solubility of Delphinidin in Water and Various Organic Solvents between (298.15 and 343.15) K. J. Chem. Eng. Data, 2010, 55(7), 2603-2606.
[http://dx.doi.org/10.1021/je900851k]
[116]
Mendoza, J.; Pina, F.; Basílio, N.; Guimarães, M.; de Freitas, V.; Cruz, L. Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes Pigments, 2018, 151, 321-326.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.007]
[117]
Afaq, F.; Zaman, N.; Khan, N.; Syed, D.N.; Sarfaraz, S.; Zaid, M.A.; Mukhtar, H. Inhibition of epidermal growth factor receptor signaling pathway by delphinidin, an anthocyanidin in pigmented fruits and vegetables. Int. J. Cancer, 2008, 123(7), 1508-1515.
[http://dx.doi.org/10.1002/ijc.23675] [PMID: 18623129]
[118]
Hua, Z.; Yuesheng, D.; Ge, X.; Menglu, L.; Liya, D. LiJia, A.; Zhilong, X., Extraction and Purification of Anthocyanins from the Fruit Residues of Vaccinium uliginosum Linn. J. Chromatogr. Sep. Tech., 2013, 4(2), 1-5.
[http://dx.doi.org/10.4172/2157-7064.1000167]
[119]
Adjé, F.; Lozano, Y.F.; Lozano, P.; Adima, A.; Chemat, F.; Gaydou, E.M. Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Ind. Crops Prod., 2010, 32(3), 439-444.
[http://dx.doi.org/10.1016/j.indcrop.2010.06.011]
[120]
Wang, Z.Y.; Xu, M.L.; Zhu, B.W. Optimum conditions for extraction of anthocyanidin from blueberry. Journal of Dalian Institute of Light Industry, 2007, 26, 196-198.
[121]
Kapasakalidis, P.G.; Rastall, R.A.; Gordon, M.H. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J. Agric. Food Chem., 2006, 54(11), 4016-4021.
[http://dx.doi.org/10.1021/jf052999l] [PMID: 16719528]
[122]
Marpaung, A.M.; Andarwulan, N.; Prangdimurti, E. Optimization of anthocyanin pigment extraction from butterfly pea (Clitoria ternatea L.) petal using response surface methodology. Acta Hortic., 2013, (1011), 205-211.
[http://dx.doi.org/10.17660/ActaHortic.2013.1011.24]
[123]
Mohamad, M.F.; Nasir, S.N.S.; Sarmidi, M.R. Degradation kinetics and colour of anthocyanins in aqueous extracts of butterfly pea. Asian J. Food Agro-Ind., 2011, 4(5), 306-315.
[124]
Abdullah, R.; Lee, P.M.; Hung, L.K. In: Multiple Color and pH Stability of Floral Anthocyanin Extract: elitaria Ternatea International Conference on Science and Social Research (CSSR 2010),; Kuala Lumpur: Malaysia, 2010; p. 5.
[http://dx.doi.org/10.1109/CSSR.2010.5773778]
[125]
Chong, F.C.; Gwee, X.F. Ultrasonic extraction of anthocyanin from Clitoria ternatea flowers using response surface methodology. Nat. Prod. Res., 2015, 29(15), 1485-1487.
[http://dx.doi.org/10.1080/14786419.2015.1027892] [PMID: 25836369]
[126]
Sapiee, S. The Extraction of Anthocyanin from Clitoria Ternatea (Blue Pea Flower) by Using Spray Dryer; UMP, 2013.
[127]
Muzi Marpaung, A.; Andarwulan, N.; Hariyadi, P.; Nur Faridah, D. Thermal Degradation of Anthocyanins in Butterfly Pea (Clitoria ternatea L.) Flower Extract at pH 7. American Journal of Food Science and Technology, 2017, 5(5), 199-203.
[http://dx.doi.org/10.12691/ajfst-5-5-5]
[128]
Koda, T.; Ichi, T.; Odake, K.; Furuta, H.; Sekiya, J. Blue Pigment Formation by Clerodendron trichotomum callus. Biosci. Biotechnol. Biochem., 1992, 56(12), 2020-2022.
[http://dx.doi.org/10.1271/bbb.56.2020]
[129]
Oliveira, J.; Santos-Buelga, C.; Silva, A.M.S.; de Freitas, V.; Mateus, N. Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Anal. Chim. Acta, 2006, 563(1-2), 2-9.
[http://dx.doi.org/10.1016/j.aca.2005.11.027]
[130]
Mateus, N.; Oliveira, J.; Haettich-Motta, M.; de Freitas, V. New Family of Bluish Pyranoanthocyanins. J. Biomed. Biotechnol., 2004, 2004(5), 299-305.
[http://dx.doi.org/10.1155/S1110724304404033] [PMID: 15577193]
[131]
Newsome, A.G.; Murphy, B.T.; van Breemen, R.B. Isolation and Characterization of Natural Blue Pigments from Underexplored Sources.Physical Methods in Food Analysis; American Chemical Society, 2013, Vol. 1138, pp. 105-125.
[http://dx.doi.org/10.1021/bk-2013-1138.ch008]
[132]
Li, J.; Walker, C.E.; Faubion, J.M. Acidulant and oven type affect total anthocyanin content of blue corn cookies. J. Sci. Food Agric., 2011, 91(1), 38-43.
[http://dx.doi.org/10.1002/jsfa.4173] [PMID: 20848670]
[133]
Doke Jayant, M. An Improved and Efficient Method for the Extraction of Phycocyanin from Spirulina sp. Int. J. Food Eng., 2005, 1(5), 2.
[134]
Sinha, K.; Das Saha, P.; Ramya, V.; Datta, S. Improved Extraction of Natural Blue dye from Butterfly Pea using Microwave Assisted Methodology to Reduce the Effect of Synthetic Blue Dye. International Journal of Chemical Technology, 2012, 4, 57-65.
[http://dx.doi.org/10.3923/ijct.2012.57.65]
[135]
Lee, P.M.; Abdullah, R.; Hung, L.K. In: Thermal Degradation of Blue Anthocyanin Extract of Clitoria ternatea Flower 2nd International Conference on Biotechnology and Food Science IPCBEE; Singapore, 2011; pp. 49-53.
[136]
Martínez, J.M.; Luengo, E.; Saldaña, G.; Álvarez, I.; Raso, J. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res. Int., 2017, 99(Pt 3), 1042-1047.
[http://dx.doi.org/10.1016/j.foodres.2016.09.029] [PMID: 28865615]
[137]
Boonsong, P.; Laohakunjit, N.O. K., Detection of Pigments and Natural Colorants from Thai Herbal Plants for Possible Use as Coloring Dyes. HortScience, 2011, 46(2), 265-272.
[http://dx.doi.org/10.21273/HORTSCI.46.2.265]
[138]
Yoshida, K.; Kitahara, S.; Ito, D.; Kondo, T. Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis. Phytochemistry, 2006, 67(10), 992-998.
[http://dx.doi.org/10.1016/j.phytochem.2006.03.013] [PMID: 16678868]
[139]
Bianco, A. Recent developments in iridoids chemistry. Pure Appl. Chem., 1994, 66(10-11), 2335-2338.
[http://dx.doi.org/10.1351/pac199466102335]
[140]
Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. (Tokyo), 2007, 55(2), 159-222.
[http://dx.doi.org/10.1248/cpb.55.159] [PMID: 17268091]
[141]
López Carreras, N.; Miguel, M.; Aleixandre, A. Propiedades beneficiosas de los terpenos iridoides sobre la salud. Nutr. Clín. Diet. Hosp., 2012, 32, 81-91.
[142]
Silva, A.V.C.; Freire, K.C.S.; Lédo, A.S.; Rabbani, A.R.C. Diversity and genetic structure of jenipapo (Genipa americana L.) Brazilian accessions. Sci. Agric., 2014, 71(5), 387-393.
[http://dx.doi.org/10.1590/0103-9016-2014-0038]
[143]
Koo, H-J.; Song, Y.S.; Kim, H-J.; Lee, Y-H.; Hong, S-M.; Kim, S-J.; Kim, B-C.; Jin, C.; Lim, C-J.; Park, E-H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol., 2004, 495(2-3), 201-208.
[http://dx.doi.org/10.1016/j.ejphar.2004.05.031] [PMID: 15249171]
[144]
Koo, H.J.; Lim, K.H.; Jung, H.J.; Park, E.H. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol., 2006, 103(3), 496-500.
[http://dx.doi.org/10.1016/j.jep.2005.08.011] [PMID: 16169698]
[145]
Juma, B.F.; Majinda, R.R.T. Constituents of Gardenia volkensii: their brine shrimp lethality and DPPH radical scavenging properties. Nat. Prod. Res., 2007, 21(2), 121-125.
[http://dx.doi.org/10.1080/14786410600905907] [PMID: 17365698]
[146]
Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. Pharmacol., 2005, 70(9), 1398-1407.
[http://dx.doi.org/10.1016/j.bcp.2005.07.025] [PMID: 16143311]
[147]
Shen, X.L.; Liu, H.; Xiang, H.; Qin, X.M.; Du, G.H.; Tian, J.S. Combining biochemical with (1)H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism. J. Pharm. Biomed. Anal., 2016, 129, 80-89.
[http://dx.doi.org/10.1016/j.jpba.2016.06.041] [PMID: 27411170]
[148]
Kim, S.J.; Kim, J.K.; Lee, D.U.; Kwak, J.H.; Lee, S.M. Genipin protects lipopolysaccharide-induced apoptotic liver damage in D-galactosamine-sensitized mice. Eur. J. Pharmacol., 2010, 635(1-3), 188-193.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.007] [PMID: 20303938]
[149]
Lee, C.H.; Kwak, S-C.; Kim, J-Y.; Oh, H.M.; Rho, M.C.; Yoon, K-H.; Yoo, W-H.; Lee, M.S.; Oh, J. Genipin inhibits RANKL-induced osteoclast differentiation through proteasome-mediated degradation of c-Fos protein and suppression of NF-κB activation. J. Pharmacol. Sci., 2014, 124(3), 344-353.
[http://dx.doi.org/10.1254/jphs.13174FP] [PMID: 24646621]
[150]
Shindo, S.; Hosokawa, Y.; Hosokawa, I.; Ozaki, K.; Matsuo, T. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells. Biochimie, 2014, 107((Pt B)), 391-395.
[http://dx.doi.org/10.1016/j.biochi.2014.10.008] [PMID: 25457105]
[151]
Chen, J.L.; Shi, B.Y.; Xiang, H.; Hou, W.J.; Qin, X.M.; Tian, J.S.; Du, G.H. (1)H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment. J. Pharm. Biomed. Anal., 2015, 115(Suppl. C), 150-158.
[http://dx.doi.org/10.1016/j.jpba.2015.07.002] [PMID: 26204246]
[152]
Sohn, Y.A.; Hwang, I.Y.; Lee, S.Y.; Cho, H.S.; Jeong, C.S. Protective effects of genipin on gastrointestinal disorders. Biol. Pharm. Bull., 2017, 40(2), 151-154.
[http://dx.doi.org/10.1248/bpb.b16-00545] [PMID: 28154253]
[153]
Xiao, W.; Li, S.; Wang, S.; Ho, C-T. Chemistry and bioactivity of Gardenia jasminoides. Yao Wu Shi Pin Fen Xi, 2017, 25(1), 43-61.
[http://dx.doi.org/10.1016/j.jfda.2016.11.005] [PMID: 28911543]
[154]
Lee, S-W.; Lim, J-M.; Bhoo, S-H.; Paik, Y-S.; Hahn, T-R. Colorimetric determination of amino acids using genipin from Gardenia jasminoides. Anal. Chim. Acta, 2003, 480(2), 267-274.
[http://dx.doi.org/10.1016/S0003-2670(03)00023-0]
[155]
Bentes, Ade.S.; Mercadante, A.Z. Influence of the stage of ripeness on the composition of iridoids and phenolic compounds in genipap (Genipa americana L.). J. Agric. Food Chem., 2014, 62(44), 10800-10808.
[http://dx.doi.org/10.1021/jf503378k] [PMID: 25323434]
[156]
Bentes, Ade.S.; de Souza, H.A.L.; Amaya-Farfan, J.; Lopes, A.S.; de Faria, L.J.G. Influence of the composition of unripe genipap (Genipa americana L.) fruit on the formation of blue pigment. J. Food Sci. Technol., 2015, 52(6), 3919-3924.
[PMID: 26028777]
[157]
FDA Food and Drugs Administration - Listing of color additives exempt from certification; food, drug and cosmetic labeling: cochineal extract and carmine declaration (21 CFR parts 73 and 101). Federal register. 2009, 74(2), 207-217.
[158]
Brauch, J.E.; Zapata-Porras, S.P.; Buchweitz, M.; Aschoff, J.K.; Carle, R. Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants? Food Res. Int., 2016, 89(Pt 1), 391-398.
[http://dx.doi.org/10.1016/j.foodres.2016.08.029] [PMID: 28460930]
[159]
Velásquez, C.L.; Rivas, A.; Ocanto, I.S. Obtención de Genipina a partir de frutos de caruto (Genipa americana L.) del llano venezolano. Avances en Química, 2014, 9(2), 75-86.
[160]
Renhe, I.R.T.; Stringheta, P.C.; Silva, F.F.e.; Oliveira, T.V.d. Obtenção de corante natural azul extraído de frutos de jenipapo. Pesqui. Agropecu. Bras., 2009, 44, 649-652.
[http://dx.doi.org/10.1590/S0100-204X2009000600015]
[161]
Ramos-de-la-Peña, A.M.; Renard, C.M.; Wicker, L.; Montañez, J.C.; García-Cerda, L.A.; Contreras-Esquivel, J.C. Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana). Ultrason. Sonochem., 2014, 21(1), 43-49.
[http://dx.doi.org/10.1016/j.ultsonch.2013.06.008] [PMID: 23871416]
[162]
Bellé, A.S.; Hackenhaar, C.R.; Spolidoro, L.S.; Rodrigues, E.; Klein, M.P.; Hertz, P.F. Efficient enzyme-assisted extraction of genipin from genipap (Genipa americana L.) and its application as a crosslinker for chitosan gels. Food Chem., 2018, 246, 266-274.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.028] [PMID: 29291849]
[163]
Winotapun, W.; Opanasopit, P.; Ngawhirunpat, T.; Rojanarata, T. One-enzyme catalyzed simultaneous plant cell disruption and conversion of released glycoside to aglycone combined with in situ product separation as green one-pot production of genipin from gardenia fruit. Enzyme Microb. Technol., 2013, 53(2), 92-96.
[http://dx.doi.org/10.1016/j.enzmictec.2013.05.001] [PMID: 23769308]
[164]
Eriksen, N.T. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol., 2008, 80(1), 1-14.
[http://dx.doi.org/10.1007/s00253-008-1542-y] [PMID: 18563408]
[165]
Borowitzka, M.A. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol., 2013, 25(3), 743-756.
[http://dx.doi.org/10.1007/s10811-013-9983-9]
[166]
Barsanti, L.; Gualtieri, P. Is exploitation of microalgae economically and energetically sustainable? Algal Res., 2018, 31, 107-115.
[http://dx.doi.org/10.1016/j.algal.2018.02.001]
[167]
Manirafasha, E.; Ndikubwimana, T.; Zeng, X.; Lu, Y.; Jing, K. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J., 2016, 109, 282-296.
[http://dx.doi.org/10.1016/j.bej.2016.01.025]
[168]
Vigani, M.; Parisi, C.; Rodríguez-Cerezo, E.; Barbosa, M.J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol., 2015, 42(1), 81-92.
[http://dx.doi.org/10.1016/j.tifs.2014.12.004]
[169]
Khatoon, H.; Kok Leong, L.; Abdu Rahman, N.; Mian, S.; Begum, H.; Banerjee, S.; Endut, A. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour. Technol., 2018, 249, 652-658.
[http://dx.doi.org/10.1016/j.biortech.2017.10.052] [PMID: 29091850]
[170]
Patel, H.M.; Rastogi, R.P.; Trivedi, U.; Madamwar, D. Structural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Res., 2018, 32, 372-383.
[http://dx.doi.org/10.1016/j.algal.2018.04.024]
[171]
Rahman, D.Y.; Sarian, F.D.; van Wijk, A.; Martinez-Garcia, M.; van der Maarel, M.J.E.C. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant. J. Appl. Phycol., 2017, 29(3), 1233-1239.
[http://dx.doi.org/10.1007/s10811-016-1007-0] [PMID: 28572707]
[172]
Chen, X.; Wu, M.; Yang, Q.; Wang, S. Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. Lebensm. Wiss. Technol., 2017, 77, 468-474.
[http://dx.doi.org/10.1016/j.lwt.2016.12.005]
[173]
Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrason. Sonochem., 2017, 38, 92-103.
[http://dx.doi.org/10.1016/j.ultsonch.2017.02.030] [PMID: 28633862]
[174]
Lee, N.K.; Oh, H-M.; Kim, H-S.; Ahn, C-Y. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresour. Technol., 2017, 227, 164-170.
[http://dx.doi.org/10.1016/j.biortech.2016.12.053] [PMID: 28024193]
[175]
Sonani, R.R.; Patel, S.; Bhastana, B.; Jakharia, K.; Chaubey, M.G.; Singh, N.K.; Madamwar, D. Purification and antioxidant activity of phycocyanin from Synechococcus sp. R42DM isolated from industrially polluted site. Bioresour. Technol, 2017, 245((Pt A)), 325-331.
[http://dx.doi.org/10.1016/j.biortech.2017.08.129] [PMID: 28898827]
[176]
Fernández-Rojas, B.; Hernández-Juárez, J.; Pedraza-Chaverri, J. Nutraceutical properties of phycocyanin. J. Funct. Foods, 2014, 11, 375-392.
[http://dx.doi.org/10.1016/j.jff.2014.10.011]
[177]
Patel, A.; Mishra, S.; Pawar, R.; Ghosh, P.K. Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr. Purif., 2005, 40(2), 248-255.
[http://dx.doi.org/10.1016/j.pep.2004.10.028] [PMID: 15766866]
[178]
Lucas, B.F.; Morais, M.G.d.; Santos, T.D.; Costa, J.A.V. Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. Lebensm. Wiss. Technol., 2018, 90, 270-276.
[http://dx.doi.org/10.1016/j.lwt.2017.12.032]
[179]
Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina - From growth to nutritional product: A review. Trends Food Sci. Technol., 2017, 69, 157-171.
[http://dx.doi.org/10.1016/j.tifs.2017.09.010]
[180]
Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res., 2017, 26, 161-171.
[http://dx.doi.org/10.1016/j.algal.2017.07.017]
[181]
Santos, T.D.; Freitas, B.C.B.d.; Moreira, J.B.; Zanfonato, K.; Costa, J.A.V. Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innov. Food Sci. Emerg. Technol., 2016, 37, 216-220.
[http://dx.doi.org/10.1016/j.ifset.2016.07.016]
[182]
Vaz, B.S.; Moreira, J.B.; Morais, M.G.d.; Costa, J.A.V. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci., 2016, 7, 73-77.
[http://dx.doi.org/10.1016/j.cofs.2015.12.006]
[183]
Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. Lebensm. Wiss. Technol., 2014, 58(1), 102-108.
[http://dx.doi.org/10.1016/j.lwt.2014.02.054]
[184]
Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent developments in production and biotechnological applications of Cphycocyanin. BioMed Research International, 2013, ID 742859
[http://dx.doi.org/10.1155/2013/742859]
[185]
Jespersen, L.; Strømdahl, L.D.; Olsen, K.; Skibsted, L.H. Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur. Food Res. Technol., 2005, 220(3), 261-266.
[http://dx.doi.org/10.1007/s00217-004-1062-7]
[186]
Abd El-Hakim, Y.M.; Mohamed, W.A.; El-Metwally, A.E. Spirulina platensis attenuates furan reprotoxicity by regulating oxidative stress, inflammation, and apoptosis in testis of rats. Ecotoxicol. Environ. Saf., 2018, 161, 25-33.
[http://dx.doi.org/10.1016/j.ecoenv.2018.05.073] [PMID: 29857230]
[187]
Fernandes, E. Silva, E.; Figueira, F.D.S.; Lettnin, A.P.; Carrett-Dias, M.; Filgueira, D.M.V.B.; Kalil, S.; Trindade, G.S.; Votto, A.P.S. C-Phycocyanin: Cellular targets, mechanisms of action and multi drug resistance in cancer. Pharmacol. Rep., 2018, 70(1), 75-80.
[http://dx.doi.org/10.1016/j.pharep.2017.07.018] [PMID: 29331790]
[188]
Gdara, N.B.; Belgacem, A.; Khemiri, I.; Mannai, S.; Bitri, L. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomed. Pharmacother., 2018, 102, 196-202.
[http://dx.doi.org/10.1016/j.biopha.2018.03.025] [PMID: 29558716]
[189]
Khalil, S.R.; Khalifa, H.A.; Abdel-Motal, S.M.; Mohammed, H.H.; Elewa, Y.H.A.; Mahmoud, H.A. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate. Ecotoxicol. Environ. Saf., 2018, 157, 255-265.
[http://dx.doi.org/10.1016/j.ecoenv.2018.03.068] [PMID: 29625400]
[190]
Pattarayan, D.; Rajarajan, D.; Ayyanar, S.; Palanichamy, R.; Subbiah, R. C-phycocyanin suppresses transforming growth factor-β1-induced epithelial mesenchymal transition in human epithelial cells. Pharmacol. Rep., 2017, 69(3), 426-431.
[http://dx.doi.org/10.1016/j.pharep.2016.12.013]
[191]
Bigagli, E.; Cinci, L.; Niccolai, A.; Tredici, M.R.; Biondi, N.; Rodolfi, L.; Lodovici, M.; D’Ambrosio, M.; Mori, G.; Luceri, C. Safety evaluations and lipid-lowering activity of an Arthrospira platensis enriched diet: A 1-month study in rats. Food Res. Int., 2017, 102, 380-386.
[http://dx.doi.org/10.1016/j.foodres.2017.09.011] [PMID: 29195962]
[192]
Xia, D.; Liu, B.; Xin, W.; Liu, T.; Sun, J.; Liu, N.; Qin, S.; Du, Z. Protective effects of C-phycocyanin on alcohol-induced subacute liver injury in mice. J. Appl. Phycol., 2016, 28(2), 765-772.
[http://dx.doi.org/10.1007/s10811-015-0677-3]
[193]
Ou, Y.; Ren, Z.; Wang, J.; Yang, X. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression. Chem. Biol. Interact., 2016, 247, 49-54.
[http://dx.doi.org/10.1016/j.cbi.2016.01.018] [PMID: 26827782]
[194]
Minic, S.L.; Stanic-Vucinic, D.; Mihailovic, J.; Krstic, M.; Nikolic, M.R.; Cirkovic Velickovic, T. Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina. J. Proteomics, 2016, 147, 132-139.
[http://dx.doi.org/10.1016/j.jprot.2016.03.043] [PMID: 27084687 ]
[195]
Deniz, I.; Ozen, M.O.; Yesil-Celiktas, O. Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. J. Supercrit. Fluids, 2016, 108, 13-18.
[http://dx.doi.org/10.1016/j.supflu.2015.10.015]
[196]
Raposo, M.F.J.; de Morais, A.M.M.B. Microalgae for the prevention of cardiovascular disease and stroke. Life Sci., 2015, 125, 32-41.
[http://dx.doi.org/10.1016/j.lfs.2014.09.018] [PMID: 25277945]
[197]
Li, B.; Gao, M-H.; Chu, X-M.; Teng, L.; Lv, C-Y.; Yang, P.; Yin, Q-F. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur. J. Pharmacol., 2015, 749, 107-114.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.009] [PMID: 25617793]
[198]
Mitra, S.; Siddiqui, W.A.; Khandelwal, S. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem. Biol. Interact., 2015, 238, 138-150.
[http://dx.doi.org/10.1016/j.cbi.2015.06.016] [PMID: 26079211]
[199]
Chen, H-W.; Yang, T-S.; Chen, M-J.; Chang, Y-C.; Wang, E.I.C.; Ho, C-L.; Lai, Y-J.; Yu, C-C.; Chou, J-C.; Chao, L.K-P.; Liao, P-C. Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem., 2014, 49(8), 1337-1344.
[http://dx.doi.org/10.1016/j.procbio.2014.05.006]
[200]
Sathasivam, R.; Radhakrishnan, R.; Hashem, A. Abd_Allah, E. F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci., in press
[201]
Sekar, S.; Chandramohan, M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol., 2008, 20(2), 113-136.
[http://dx.doi.org/10.1007/s10811-007-9188-1]
[202]
Hou, Y.; Yan, M.; Wang, Q.; Wang, Y.; Xu, Y.; Wang, Y.; Li, H.; Wang, H. C-phycocyanin from Spirulina maxima as a green fluorescent probe for the highly selective detection of mercury(II) in seafood. Food Anal. Methods, 2017, 10(6), 1931-1939.
[http://dx.doi.org/10.1007/s12161-016-0759-0]
[203]
MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol., 1998, 124(2-3), 311-334.
[http://dx.doi.org/10.1006/jsbi.1998.4062] [PMID: 10049814]
[204]
Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol., 2015, 8(2), 190-209.
[http://dx.doi.org/10.1111/1751-7915.12167] [PMID: 25223877]
[205]
Abalde, J.; Betancourt, L.; Torres, E.; Cid, A.; Barwell, C. Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci., 1998, 136(1), 109-120.
[http://dx.doi.org/10.1016/S0168-9452(98)00113-7]
[206]
Chaiklahan, R.; Chirasuwan, N.; Loha, V.; Tia, S.; Bunnag, B. Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresour. Technol., 2011, 102(14), 7159-7164.
[http://dx.doi.org/10.1016/j.biortech.2011.04.067] [PMID: 21570281]
[207]
Heyde, A.; Schiffelbein, O.; Christiansen, C. Protein-rich spirulina extracts., WO2012104091A1. 2012.
[208]
Martelli, G.; Folli, C.; Visai, L.; Daglia, M.; Ferrari, D. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochem., 2014, 49(1), 154-159.
[http://dx.doi.org/10.1016/j.procbio.2013.10.008]
[209]
Chaiklahan, R.; Chirasuwan, N.; Bunnag, B. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochem., 2012, 47(4), 659-664.
[http://dx.doi.org/10.1016/j.procbio.2012.01.010]
[210]
Wu, H-L.; Wang, G-H.; Xiang, W-Z.; Li, T.; He, H. Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis. Int. J. Food Prop., 2016, 19(10), 2349-2362.
[http://dx.doi.org/10.1080/10942912.2015.1038564]
[211]
Rastogi, R.P.; Sonani, R.R.; Madamwar, D. Physico-chemical factors affecting the in vitro stability of phycobiliproteins from Phormidium rubidum A09DM. Bioresour. Technol., 2015, 190, 219-226.
[http://dx.doi.org/10.1016/j.biortech.2015.04.090] [PMID: 25958145]
[212]
Su, C-H.; Liu, C-S.; Yang, P-C.; Syu, K-S.; Chiuh, C-C. Solid-liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors. Separ. Purif. Tech., 2014, 123, 64-68.
[http://dx.doi.org/10.1016/j.seppur.2013.12.026]
[213]
Hadiyanto; Christwardana, M.; Sutanto, H.; Suzery, M.; Amelia, D.; Aritonang, R. F., Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp. Food Biosci., 2018, 22, 85-90.
[http://dx.doi.org/10.1016/j.fbio.2018.01.007]
[214]
Minic, S.; Stanic-Vucinic, D.; Radomirovic, M.; Radibratovic, M.; Milcic, M.; Nikolic, M.; Cirkovic Velickovic, T. Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chem., 2018, 239, 1090-1099.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.066] [PMID: 28873526]
[215]
Selig, M.J.; Malchione, N.M.; Gamaleldin, S.; Padilla-Zakour, O.I.; Abbaspourrad, A. Protection of blue color in a spirulina derived phycocyanin extract from proteolytic and thermal degradation via complexation with beet-pectin. Food Hydrocoll., 2018, 74, 46-52.
[http://dx.doi.org/10.1016/j.foodhyd.2017.07.027]
[216]
Pan-utai, W.; Kahapana, W.; Iamtham, S. Extraction of C-phycocyanin from Arthrospira (Spirulina) and its thermal stability with citric acid. J. Appl. Phycol., 2018, 30(1), 231-242.
[http://dx.doi.org/10.1007/s10811-017-1155-x]
[217]
Mishra, S.K.; Shrivastav, A.; Mishra, S. Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochem., 2008, 43(4), 339-345.
[http://dx.doi.org/10.1016/j.procbio.2007.12.012]
[218]
Falkeborg, M.F.; Roda-Serrat, M.C.; Burnæs, K.L.; Nielsen, A.L.D. Stabilising phycocyanin by anionic micelles. Food Chem., 2018, 239, 771-780.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.007] [PMID: 28873634]
[219]
Yan, M.; Liu, B.; Jiao, X.; Qin, S. Preparation of phycocyanin microcapsules and its properties. Food Bioprod. Process., 2014, 92(1), 89-97.
[http://dx.doi.org/10.1016/j.fbp.2013.07.008]
[220]
Dufossé, L.; Galaup, P.; Yaron, A.; Arad, S.M.; Blanc, P.; Chidambara Murthy, K.N.; Ravishankar, G.A. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends Food Sci. Technol., 2005, 16(9), 389-406.
[http://dx.doi.org/10.1016/j.tifs.2005.02.006]
[221]
Fasaei, F.; Bitter, J.H.; Slegers, P.M.; van Boxtel, A.J.B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res., 2018, 31, 347-362.
[http://dx.doi.org/10.1016/j.algal.2017.11.038]
[222]
de Jesus, C.S.; da Silva Uebel, L.; Costa, S.S.; Miranda, A.L.; de Morais, E.G.; de Morais, M.G.; Costa, J.A.V.; Nunes, I.L.; de Souza Ferreira, E.; Druzian, J.I. Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour. Technol., 2018, 256, 86-94.
[http://dx.doi.org/10.1016/j.biortech.2018.01.149] [PMID: 29433050]
[223]
Ho, S-H.; Liao, J-F.; Chen, C-Y.; Chang, J-S. Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresour. Technol., 2018, 247, 669-675.
[http://dx.doi.org/10.1016/j.biortech.2017.09.165] [PMID: 30060398]
[224]
Manirafasha, E.; Murwanashyaka, T.; Ndikubwimana, T.; Rashid Ahmed, N.; Liu, J.; Lu, Y.; Zeng, X.; Ling, X.; Jing, K. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour. Technol., 2018, 255, 293-301.
[http://dx.doi.org/10.1016/j.biortech.2017.12.068] [PMID: 29422330]
[225]
Shirnalli, G.G.; Kaushik, M.S.; Kumar, A.; Abraham, G.; Singh, P.K. Isolation and characterization of high protein and phycocyanin producing mutants of Arthrospira platensis. J. Basic Microbiol., 2018, 58(2), 162-171.
[http://dx.doi.org/10.1002/jobm.201700464] [PMID: 29149514]
[226]
Pan-utai, W.; Iamtham, S. Physical extraction and extrusion entrapment of C-phycocyanin from Arthrospira platensis. J. King Saud Univ. Sci, 2018, 31(4), 1535-1542.
[227]
Oliveira, E.G.; Duarte, J.H.; Moraes, K.; Crexi, V.T.; Pinto, L.A. Optimisation of Spirulina platensis convective drying: Evaluation of phycocyanin loss and lipid oxidation. Int. J. Food Sci. Technol., 2010, 45(8), 1572-1578.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02299.x]
[228]
Sarada, R.; Pillai, M.G.; Ravishankar, G.A. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem., 1999, 34(8), 795-801.
[http://dx.doi.org/10.1016/S0032-9592(98)00153-8]
[229]
Papadaki, S.; Kyriakopoulou, K.; Tzovenis, I.; Krokida, M. Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov. Food Sci. Emerg. Technol., 2017, 44, 217-223.
[http://dx.doi.org/10.1016/j.ifset.2017.02.014]
[230]
Tavanandi, H.A.; Mittal, R.; Chandrasekhar, J.; Raghavarao, K.S.M.S. Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Res., 2018, 31, 239-251.
[http://dx.doi.org/10.1016/j.algal.2018.02.008]
[231]
İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J. Food Compos. Anal., 2018, 70, 78-88.
[http://dx.doi.org/10.1016/j.jfca.2018.04.007]
[232]
Zhu, Y.; Chen, X.B.; Wang, K.B.; Li, Y.X.; Bai, K.Z.; Kuang, T.Y.; Ji, H.B. A simple method for extracting C-phycocyanin from Spirulina platensis using Klebsiella pneumoniae. Appl. Microbiol. Biotechnol., 2007, 74(1), 244-248.
[http://dx.doi.org/10.1007/s00253-006-0636-7] [PMID: 17013600]
[233]
Rodrigues, R.D.P.; de Castro, F.C.; Santiago-Aguiar, R.S.d.; Rocha, M.V.P. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res., 2018, 31, 454-462.
[http://dx.doi.org/10.1016/j.algal.2018.02.021]
[234]
Manirafasha, E.; Murwanashyaka, T.; Ndikubwimana, T.; Yue, Q.; Zeng, X.; Lu, Y.; Jing, K. Ammonium chloride: A novel effective and inexpensive salt solution for phycocyanin extraction from Arthrospira (Spirulina) platensis. J. Appl. Phycol., 2017, 29(3), 1261-1270.
[http://dx.doi.org/10.1007/s10811-016-0989-y]
[235]
Agustini, T.W.; Suzery, M.; Sutrisnanto, D.; Ma’ruf, W.F. Hadiyanto, Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environ. Sci., 2015, 23, 282-289.
[http://dx.doi.org/10.1016/j.proenv.2015.01.042]
[236]
Dejsungkranont, M.; Chen, H-H.; Sirisansaneeyakul, S. Enhancement of antioxidant activity of C-phycocyanin of Spirulina powder treated with supercritical fluid carbon dioxide. Agric. Nat. Resour. (Bangk.), 2017, 51(5), 347-354.
[http://dx.doi.org/10.1016/j.anres.2017.12.001]
[237]
Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Recovery of Functional Pigments from four Different Species of Microalgae. IOSR J. Environ. Sci. Toxicol. Food Technol, 2016, 10(9), 26-30.
[238]
Tavanandi, H.A.; Chandralekha Devi, A.; Raghavarao, K. A newer approach for the primary extraction of allophycocyanin with high purity and yield from dry biomass of Arthrospira platensis. Separ. Purif. Tech., 2018, 204, 162-174.
[http://dx.doi.org/10.1016/j.seppur.2018.04.057]
[239]
Ores, J.D.C.; Amarante, M.C.A.; Kalil, S.J. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresour. Technol., 2016, 219, 219-227.
[http://dx.doi.org/10.1016/j.biortech.2016.07.133] [PMID: 27494103]
[240]
Luo, X.; Smith, P.; Raston, C.; Zhang, W. Vortex fluidic device-intensified aqueous two phase extraction of C-phycocyanin from Spirulina maxima. ACS Sustain. Chem.& Eng., 2016, 4(7), 3905-3911.
[http://dx.doi.org/10.1021/acssuschemeng.6b00756]
[241]
Choi, W.Y.; Lee, H.Y. Effect of ultrasonic extraction on production and structural changes of C-phycocyanin from marine Spirulina maxima. Int. J. Mol. Sci., 2018, 19(1), 220.
[http://dx.doi.org/10.3390/ijms19010220] [PMID: 29324668]
[242]
Chen, C-Y.; Kao, P-C.; Tan, C.H.; Show, P.L.; Cheah, W.Y.; Lee, W-L.; Ling, T.C.; Chang, J-S. Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochem. Eng. J., 2016, 112, 78-85.
[http://dx.doi.org/10.1016/j.bej.2016.04.009]
[243]
Chethana, S.; Nayak, C.A.; Madhusudhan, M.C.; Raghavarao, K.S.M.S. Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. J. Food Sci. Technol., 2015, 52(4), 2415-2421.
[http://dx.doi.org/10.1007/s13197-014-1287-9] [PMID: 25829627]
[244]
Kumar, D.; Dhar, D.W.; Pabbi, S.; Kumar, N.; Walia, S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant. Physiol., 2014, 19(2), 184-188.
[http://dx.doi.org/10.1007/s40502-014-0094-7] [PMID: 25089058]
[245]
Johnson, E.M.; Kumar, K.; Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol., 2014, 166, 541-547.
[http://dx.doi.org/10.1016/j.biortech.2014.05.097] [PMID: 24951941]
[246]
Sørensen, L.; Hantke, A.; Eriksen, N.T. Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. J. Sci. Food Agric., 2013, 93(12), 2933-2938.
[http://dx.doi.org/10.1002/jsfa.6116] [PMID: 23427028]
[247]
Zhang, X.; Zhang, F.; Luo, G.; Yang, S.; Wang, D. Extraction and separation of phycocyanin from Spirulina using aqueous two-phase systems of ionic liquid and salt. J. Food Nutr. Res., 2015, 3(1), 15-19.
[http://dx.doi.org/10.12691/jfnr-3-1-3]
[248]
Antelo, F.S.; Costa, J.A.V.; Kalil, S.J. Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design. Braz. Arch. Biol. Technol., 2015, 58(1), 1-11.
[http://dx.doi.org/10.1590/S1516-8913201502621]
[249]
Wang, F.; Liu, Y-H.; Ma, Y.; Cui, Z-G.; Shao, L-L. Application of TMA-PEG to promote C-phycocyanin extraction from S. platensis in the PEG ATPS. Process Biochem., 2017, 52, 283-294.
[http://dx.doi.org/10.1016/j.procbio.2016.11.006]
[250]
Zhao, L.; Peng, Y-l.; Gao, J-m.; Cai, W-m. Bioprocess intensification: an aqueous two-phase process for the purification of C-phycocyanin from dry Spirulina platensis. Eur. Food Res. Technol., 2014, 238(3), 451-457.
[http://dx.doi.org/10.1007/s00217-013-2124-5]
[251]
M.P, S; A,, J.; K., P.; K, A. Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Res., 2015, 8, 115-120.
[http://dx.doi.org/10.1016/j.algal.2015.01.011]
[252]
Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D-J.; Chang, J-S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol., 2017, 229, 53-62.
[http://dx.doi.org/10.1016/j.biortech.2017.01.006] [PMID: 28107722]
[253]
Bergeron, C.; Carrier, D.J.; Ramaswamy, S. Biorefinery co-products: phytochemicals, primary metabolites and value-added biomass processing; John Wiley & Sons, 2012, Vol. 19, .
[http://dx.doi.org/10.1002/9780470976692]
[254]
Trivedi, J.; Aila, M.; Bangwal, D.P.; Kaul, S.; Garg, M.O. Algae based biorefinery—How to make sense? Renew. Sustain. Energy Rev., 2015, 47, 295-307.
[http://dx.doi.org/10.1016/j.rser.2015.03.052]
[255]
Koller, M.; Muhr, A.; Braunegg, G. Microalgae as versatile cellular factories for valued products. Algal Res., 2014, 6, 52-63.
[http://dx.doi.org/10.1016/j.algal.2014.09.002]
[256]
Vardanega, R.; Prado, J.M.; Meireles, M.A.A. Adding value to agri-food residues by means of supercritical technology. J. Supercrit. Fluids, 2015, 96, 217-227.
[http://dx.doi.org/10.1016/j.supflu.2014.09.029]

© 2025 Bentham Science Publishers | Privacy Policy