[1]
Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol., 2016, 12(10), 616-622.
[2]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2012, 35(Suppl. 1), S64-S71.
[3]
Tahrani, A.A.; Piya, M.K.; Kennedy, A.; Barnett, A.H. Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacol. Ther., 2010, 125(2), 328-361.
[4]
Singh, A., Ed.; Herbalism, phytochemistry and ethnopharmacology; CRC Press, 2011.
[5]
Leiherer, A.; Mündlein, A.; Drexel, H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul. Pharmacol., 2013, 58(1-2), 3-20.
[6]
Ghorbani, A. Phytotherapy for diabetic dyslipidemia: Evidence from clinical trials. Clin. Lipidol., 2013, 8, 311-319.
[7]
Charrouf, Z.; Guillaume, D. Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. J. Ethnopharmacol., 1999, 67(1), 7-14.
[8]
Guinda, A.; Rada, M.; Delgado, T.; Castellano, J.M. Pentacyclic triterpenic acids from Argania spinosa. Eur. J. Lipid Sci. Technol., 2011, 113(2), 231-237.
[9]
El Abbassi, A.; Khalid, N.; Zbakh, H.; Ahmad, A. Physicochemical characteristics, nutritional properties, and health benefits of argan oil: A review. Crit. Rev. Food Sci. Nutr., 2014, 54(11), 1401-1414.
[10]
Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem. Toxicol., 2000, 38(8), 647-659.
[11]
Khallouki, F.; Haubner, R.; Ricarte, I.; Erben, G.; Klika, K.; Ulrich, C.M.; Owen, R.W. Identification of polyphenolic compounds in the flesh of Argan (Morocco) fruits. Food Chem., 2015, 179, 191-198.
[12]
Farid, O.; Hebi, M.; Ajebli, M.; Hidani, A.E.; Eddouks, M. Antidiabetic effect of Ruta montana L. in streptozotocin-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol., 2017, 28(3), 275-282.
[13]
Ajebli, M.; Eddouks, M. Buxus sempervirens L improves Streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[14]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[15]
Kolterman, O.G.; Gray, R.S.; Shapiro, G.; Scarlett, J.A.; Griffin, J.; Olefsky, J.M. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes, 1984, 33(4), 346-354.
[16]
Lebovitz, H.E.; Feinglos, M.N.; Bucholtz, H.K.; Lebovitz, F.L. Potentiation of insulin action: A probable mechanism for the anti-diabetic action of sulfonylurea drugs. J. Clin. Endocrinol. Metab., 1977, 45(3), 601-604.
[17]
Simonson, D.C.; Ferrannini, E.; Bevilacqua, S.; Smith, D.; Barrett, E.; Carlson, R.; DeFronzo, R.A. Mechanism of improvement in glucose metabolism after chronic glyburide therapy. Diabetes, 1984, 33(9), 838-845.
[18]
Lamela, M.; Cadavid, I.; Gato, A.; Calleja, J.M. Effects of Lythrum salicaria in normoglycemic rats. J. Ethnopharmacol., 1985, 14(1), 83-91.
[19]
Dias, T.R.; Alves, M.G.; Casal, S.; Oliveira, P.F.; Silva, B.M. Promising potential of dietary (poly) phenolic compounds in the prevention and treatment of diabetes mellitus. Curr. Med. Chem., 2017, 24(4), 334-354.
[20]
Wolff, S.P. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br. Med. Bull., 1993, 49(3), 642-652.
[21]
Bolkent, S.; Bolkent, S.; Yanardag, R.; Tunali, S. Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract., 2005, 70(2), 103-109.
[22]
Yuan, M.; Konstantopoulos, N.; Lee, J.; Hansen, L.; Li, Z.W.; Karin, M.; Shoelson, S.E. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 2001, 293(5535), 1673-1677.
[23]
Kasetti, R.B.; Rajasekhar, M.D.; Kondeti, V.K.; Fatima, S.S.; Kumar, E.G.; Swapna, S.; Ramesh, B.; Rao, C.A. Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food Chem. Toxicol., 2010, 48(4), 1078-1084.
[24]
Latha, R.C.R.; Daisy, P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2011, 189(1-2), 112-118.
[25]
Punithavathi, V.R.; Prince, P.S.M.; Kumar, R.; Selvakumari, J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur. J. Pharmacol., 2011, 650(1), 465-471.
[26]
Kusirisin, W.; Srichairatanakool, S.; Lerttrakarnnon, P.; Lailerd, N.; Suttajit, M.; Jaikang, C.; Chaiyasut, C. Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med. Chem., 2009, 5(2), 139-147.
[27]
Vetterli, L.; Brun, T.; Giovannoni, L.; Bosco, D.; Maechler, P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E β-cells and human islets through a SIRT1-dependent mechanism. J. Biol. Chem., 2011, 286(8), 6049-6060.
[28]
Khallouki, F.; Voggel, J.; Breuer, A.; Klika, K.D.; Ulrich, C.M.; Owen, R.W. Comparison of the major polyphenols in mature Argan fruits from two regions of Morocco. Food Chem., 2017, 221, 1034-1040.
[29]
Oki, J.C. Dyslipidemias in patients with diabetes mellitus: classification and risks and benefits of therapy. Pharmacotherapy, 1995, 15(3), 317-337.
[30]
Berrougui, H.; Ettaib, A.; Herrera Gonzalez, M.D.; Alvarez de Sotomayor, M.; Bennani-Kabchi, N.; Hmamouchi, M. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. J. Ethnopharmacol., 2003, 89(1), 15-18.