Review Article

从认识到反应机制:HIV-1蛋白酶与其天然靶点相互作用的综述

卷 27, 期 15, 2020

页: [2514 - 2549] 页: 36

弟呕挨: 10.2174/0929867325666181113122900

价格: $65

摘要

目前对人类免疫缺陷病毒蛋白酶(HIV-1 PR)作为治疗艾滋病的药物靶点的研究需要更新,以促进进一步开发具有更好抑制活性的有前途的抑制剂。在过去的20年里,每年都有多达100篇关于HIV-1 PR的抑制和催化机制的学术报告发表。但没有关于HIV-1 PR作用导致感染性病毒粒子释放的基本文献综述。本文就HIV-1 PR涉及其天然靶点的识别模式和反应机制提供了最新进展(计算和实验)。这篇评论收录了80多篇来自著名期刊的文章。该酶及其突变类似物对天然Gag和Gag- pol裂解连接的识别首次被提出。随后,对文献中HIV-1 PR对其天然多肽序列的酶促作用机制进行了全面的剖析。此外,我们强调了正在进行的研究课题,利用硅方法可以在分子水平上对HIV-1蛋白酶的自然底物的催化机制提供更深入的见解。了解HIV-1 PR的识别和催化机制,导致感染病毒粒子的释放,并有意影响免疫系统,将有助于设计基于机制的抑制剂,提高生物活性。

关键词: HIV-1 PR,自然底物,识别模式,反应机制,过渡状态模型,免疫系统。

[1]
Park, H.; Suh, J.; Lee, S. Ab initio studies on the catalytic mechanism of aspartic proteinases: nucleophilic versus general acid/general base mechanism. J. Am. Chem. Soc., 2000, 122(16), 3901-3908.
[http://dx.doi.org/10.1021/ja992849p]
[2]
Canduri, F.; Teodoro, L.G.; Fadel, V.; Lorenzi, C.C.; Hial, V.; Gomes, R.A.; Neto, J.R.; de Azevedo, W.F., Jr Structure of human uropepsin at 2.45 A resolution. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(Pt 11), 1560-1570.
[http://dx.doi.org/10.1107/S0907444901013865] [PMID: 11679720]
[3]
de Azevedo, W.F., Jr; Canduri, F.; Fadel, V.; Teodoro, L.G.; Hial, V.; Gomes, R.A. Molecular model for the binary complex of uropepsin and pepstatin. Biochem. Biophys. Res. Commun., 2001, 287(1), 277-281.
[http://dx.doi.org/10.1006/bbrc.2001.5555] [PMID: 11549287]
[4]
Koelsch, G. BACE1 function and inhibition: implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules, 2017, 22(10), 1723.
[http://dx.doi.org/10.3390/molecules22101723] [PMID: 29027981]
[5]
Aufschnaiter, A.; Kohler, V.; Büttner, S. Taking out the garbage: cathepsin D and calcineurin in neurodegeneration. Neural Regen. Res., 2017, 12(11), 1776-1779.
[http://dx.doi.org/10.4103/1673-5374.219031] [PMID: 29239314]
[6]
Aufschnaiter, A.; Habernig, L.; Kohler, V.; Diessl, J.; Carmona-Gutierrez, D.; Eisenberg, T.; Keller, W.; Büttner, S. The coordinated action of calcineurin and cathepsin D protects against α-synuclein toxicity. Front. Mol. Neurosci., 2017, 10, 207.
[http://dx.doi.org/10.3389/fnmol.2017.00207] [PMID: 28713240]
[7]
Canduri, F.; Ward, R.J.; de Azevedo Júnior, W.F.; Gomes, R.A.; Arni, R.K. Purification and partial characterization of cathepsin D from porcine (Sus scrofa) liver using affinity chromatography. Biochem. Mol. Biol. Int., 1998, 45(4), 797-803.
[http://dx.doi.org/10.1080/15216549800203222] [PMID: 9713704]
[8]
Agbowuro, A.A.; Huston, W.M.; Gamble, A.B.; Tyndall, J.D.A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev., 2018, 38(4), 1295-1331.
[http://dx.doi.org/10.1002/med.21475] [PMID: 29149530]
[9]
Silva, A.M.; Lee, A.Y.; Gulnik, S.V.; Maier, P.; Collins, J.; Bhat, T.N.; Collins, P.J.; Cachau, R.E.; Luker, K.E.; Gluzman, I.Y.; Francis, S.E.; Oksman, A.; Goldberg, D.E.; Erickson, J.W. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1996, 93(19), 10034-10039.
[http://dx.doi.org/10.1073/pnas.93.19.10034] [PMID: 8816746]
[10]
Garrec, J.; Sautet, P.; Fleurat-Lessard, P. Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals? J. Phys. Chem. B, 2011, 115(26), 8545-8558.
[http://dx.doi.org/10.1021/jp200565w] [PMID: 21667951]
[11]
Potempa, M. The triple threat of HIV-1 protease inhibitors. In: The Future of HIV-1 Therapeutics; Springer, 2015, pp. 203-241.
[12]
Lockhat, H.A.; Silva, J.R.; Alves, C.N.; Govender, T.; Lameira, J.; Maguire, G.E.; Sayed, Y.; Kruger, H.G. Binding free energy calculations of nine FDA-approved protease inhibitors against HIV-1 subtype C I36T↑T containing 100 amino acids per monomer. Chem. Biol. Drug Des., 2016, 87(4), 487-498.
[http://dx.doi.org/10.1111/cbdd.12690] [PMID: 26613568]
[13]
Maseko, S.B.; Natarajan, S.; Sharma, V.; Bhattacharyya, N.; Govender, T.; Sayed, Y.; Maguire, G.E.; Lin, J.; Kruger, H.G. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies. Protein Expr. Purif., 2016, 122, 90-96.
[http://dx.doi.org/10.1016/j.pep.2016.02.013] [PMID: 26917227]
[14]
Swanstrom, R.; Wills, J. Synthesis, assembly, and processing of viral proteins; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1997.
[15]
Debouck, C.; Gorniak, J.G.; Strickler, J.E.; Meek, T.D.; Metcalf, B.W.; Rosenberg, M. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 8903-8906.
[http://dx.doi.org/10.1073/pnas.84.24.8903] [PMID: 3321060]
[16]
Darke, P.L.; Nutt, R.F.; Brady, S.F.; Garsky, V.M.; Ciccarone, T.M.; Leu, C.T.; Lumma, P.K.; Freidinger, R.M.; Veber, D.F.; Sigal, I.S. HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem. Biophys. Res. Commun., 1988, 156(1), 297-303.
[http://dx.doi.org/10.1016/S0006-291X(88)80839-8] [PMID: 3052448]
[17]
Prabu-Jeyabalan, M.; Nalivaika, E.; Schiffer, C.A. How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J. Mol. Biol., 2000, 301(5), 1207-1220.
[http://dx.doi.org/10.1006/jmbi.2000.4018] [PMID: 10966816]
[18]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[19]
Prabu-Jeyabalan, M.; Nalivaika, E.; Schiffer, C.A. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure, 2002, 10(3), 369-381.
[http://dx.doi.org/10.1016/S0969-2126(02)00720-7] [PMID: 12005435]
[20]
Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl.), 2015, 7, 95-104.
[PMID: 25897264]
[21]
Dunn, B.M. Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem. Rev., 2002, 102(12), 4431-4458.
[http://dx.doi.org/10.1021/cr010167q] [PMID: 12475196]
[22]
Mahalingam, B.; Louis, J.M.; Hung, J.; Harrison, R.W.; Weber, I.T. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Proteins, 2001, 43(4), 455-464.
[http://dx.doi.org/10.1002/prot.1057] [PMID: 11340661]
[23]
Lee, S-K.; Potempa, M.; Kolli, M.; Özen, A.; Schiffer, C.A.; Swanstrom, R. Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J. Biol. Chem., 2012, 287(16), 13279-13290.
[http://dx.doi.org/10.1074/jbc.M112.339374] [PMID: 22334652]
[24]
Trylska, J. Computational Modelling of Protonation Equilibria and Reaction Mechanism of HIV-1 Protease., 2001.
[25]
Piana, S.; Bucher, D.; Carloni, P.; Rothlisberger, U. Reaction mechanism of HIV-1 protease by hybrid Car-Parrinello/classical MD simulations. J. Phys. Chem. B, 2004, 108(30), 11139-11149.
[http://dx.doi.org/10.1021/jp037651c]
[26]
Altoè, P. A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor. Chem. Acc., 2007, 118(1), 219-240.
[http://dx.doi.org/10.1007/s00214-007-0275-9]
[27]
Honarparvar, B.; Govender, T.; Maguire, G.E.; Soliman, M.E.; Kruger, H.G. Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem. Rev., 2014, 114(1), 493-537.
[http://dx.doi.org/10.1021/cr300314q] [PMID: 24024775]
[28]
Forli, S.; Olson, A.J. Computational challenges of structure-based approaches applied to HIV. In: The Future of HIV-1 Therapeutics; Springer, 2015, pp. 31-51.
[29]
Pintro, V.O.; de Azevedo, W.F.; Filgueira, W. Optimized virtual screening workflow: Towards target-based polynomial scoring functions for HIV-1 protease. Comb. Chem. High Throughput Screen., 2017, 20(9), 820-827.
[http://dx.doi.org/10.2174/1386207320666171121110019] [PMID: 29165067]
[30]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[31]
Gulnik, S.; Erickson, J.W.; Xie, D. HIV protease: enzyme function and drug resistance. Vitam. Horm., 2000, 58, 213-256.
[http://dx.doi.org/10.1016/S0083-6729(00)58026-1] [PMID: 10668400]
[32]
Rodríguez-Barrios, F.; Gago, F. HIV protease inhibition: limited recent progress and advances in understanding current pitfalls. Curr. Top. Med. Chem., 2004, 4(9), 991-1007.
[http://dx.doi.org/10.2174/1568026043388529] [PMID: 15134553]
[33]
Nijhuis, M.; van Maarseveen, N.M.; Boucher, C.A. HIV protease resistance and viral fitness. Curr. Opin. HIV AIDS, 2007, 2(2), 108-115.
[http://dx.doi.org/10.1097/COH.0b013e32801682f6] [PMID: 19372875]
[34]
Brik, A.; Wong, C-H. HIV-1 protease: mechanism and drug discovery. Org. Biomol. Chem., 2003, 1(1), 5-14.
[http://dx.doi.org/10.1039/b208248a] [PMID: 12929379]
[35]
Sussman, F.; Villaverde, M.C.; Domínguez, J.L.; Danielson, U.H. On the active site protonation state in aspartic proteases: implications for drug design. Curr. Pharm. Des., 2013, 19(23), 4257-4275.
[http://dx.doi.org/10.2174/1381612811319230009] [PMID: 23170891]
[36]
Deo, S.K.; Lewis, J.C.; Daunert, S. Bioluminescence detection of proteolytic bond cleavage by using recombinant aequorin. Anal. Biochem., 2000, 281(1), 87-94.
[http://dx.doi.org/10.1006/abio.2000.4539] [PMID: 10847614]
[37]
Makatini, M.M.; Petzold, K.; Arvidsson, P.I.; Honarparvar, B.; Govender, T.; Maguire, G.E.; Parboosing, R.; Sayed, Y.; Soliman, M.E.; Kruger, H.G. Synthesis, screening and computational investigation of pentacycloundecane-peptoids as potent CSA-HIV PR inhibitors. Eur. J. Med. Chem., 2012, 57, 459-467.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.019] [PMID: 22867528]
[38]
Pawar, S.A.; Jabgunde, A.M.; Govender, P.; Maguire, G.E.; Kruger, H.G.; Parboosing, R.; Soliman, M.E.; Sayed, Y.; Dhavale, D.D.; Govender, T. Synthesis and molecular modelling studies of novel carbapeptide analogs for inhibition of HIV-1 protease. Eur. J. Med. Chem., 2012, 53, 13-21.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.027] [PMID: 22542107]
[39]
Makatini, M.M.; Petzold, K.; Alves, C.N.; Arvidsson, P.I.; Honarparvar, B.; Govender, P.; Govender, T.; Kruger, H.G.; Sayed, Y. JerônimoLameira; Maguire, G.E.; Soliman, M.E. Synthesis, 2D-NMR and molecular modelling studies of pentacycloundecane lactam-peptides and peptoids as potential HIV-1 wild type C-SA protease inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 78-88.
[http://dx.doi.org/10.3109/14756366.2011.633907] [PMID: 22339087]
[40]
Debouck, C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res. Hum. Retroviruses, 1992, 8(2), 153-164.
[http://dx.doi.org/10.1089/aid.1992.8.153] [PMID: 1540403]
[41]
King, N.M.; Prabu-Jeyabalan, M.; Nalivaika, E.A.; Schiffer, C.A. Combating susceptibility to drug resistance: lessons from HIV-1 protease. Chem. Biol., 2004, 11(10), 1333-1338.
[PMID: 15489160]
[42]
Prabu-Jeyabalan, M.; Nalivaika, E.A.; Romano, K.; Schiffer, C.A. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J. Virol., 2006, 80(7), 3607-3616.
[http://dx.doi.org/10.1128/JVI.80.7.3607-3616.2006] [PMID: 16537628]
[43]
Ozer, N.; Haliloglu, T.; Schiffer, C.A. Substrate specificity in HIV-1 protease by a biased sequence search method. Proteins, 2006, 64(2), 444-456.
[http://dx.doi.org/10.1002/prot.21023] [PMID: 16741993]
[44]
Ozer, N.; Schiffer, C.A.; Haliloglu, T. Predicting substrate specificity in HIV-1 protease. In; Computer Aided Drug Design & Development Society in Turkey, 2006.
[45]
Cai, Y.; Yilmaz, N.K.; Myint, W.; Ishima, R.; Schiffer, C.A. Differential Flap Dynamics in Wild-type and a Drug Resistant Variant of HIV-1 Protease Revealed by Molecular Dynamics and NMR Relaxation. J. Chem. Theory Comput., 2012, 8(10), 3452-3462.
[http://dx.doi.org/10.1021/ct300076y] [PMID: 23144597]
[46]
Shen, Y.; Altman, M.D.; Ali, A.; Nalam, M.N.; Cao, H.; Rana, T.M.; Schiffer, C.A.; Tidor, B. Testing the substrate-envelope hypothesis with designed pairs of compounds. ACS Chem. Biol., 2013, 8(11), 2433-2441.
[http://dx.doi.org/10.1021/cb400468c] [PMID: 23952265]
[47]
Perez, M.A.; Fernandes, P.A.; Ramos, M.J. Substrate recognition in HIV-1 protease: a computational study. J. Phys. Chem. B, 2010, 114(7), 2525-2532.
[http://dx.doi.org/10.1021/jp910958u] [PMID: 20121080]
[48]
Abdel-Rahman, H.M.; Al-karamany, G.S.; El-Koussi, N.A.; Youssef, A.F.; Kiso, Y. HIV protease inhibitors: peptidomimetic drugs and future perspectives. Curr. Med. Chem., 2002, 9(21), 1905-1922.
[http://dx.doi.org/10.2174/0929867023368890] [PMID: 12369875]
[49]
Tözsér, J.; Zahuczky, G.; Bagossi, P.; Louis, J.M.; Copeland, T.D.; Oroszlan, S.; Harrison, R.W.; Weber, I.T. Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases. Eur. J. Biochem., 2000, 267(20), 6287-6295.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01714.x] [PMID: 11012683]
[50]
Jones, D.T.; Tress, M.; Bryson, K.; Hadley, C. Successful recognition of protein folds using threading methods biased by sequence similarity and predicted secondary structure. Proteins, 1999, 37(S3)(Suppl. 3), 104-111.
[http://dx.doi.org/10.1002/(SICI)1097-0134(1999)37:3+<104::AID-PROT14>3.0.CO;2-P] [PMID: 10526358]
[51]
Pitera, J.W.; Van Gunsteren, W.F. A comparison of non-bonded scaling approaches for free energy calculations. Mol. Simul., 2002, 28(1-2), 45-65.
[http://dx.doi.org/10.1080/08927020211973]
[52]
Shirts, M.R. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. J. Chem. Phys., 2003, 119(11), 5740-5761.
[http://dx.doi.org/10.1063/1.1587119]
[53]
Blondel, A. Ensemble variance in free energy calculations by thermodynamic integration: theory, optimal “Alchemical” path, and practical solutions. J. Comput. Chem., 2004, 25(7), 985-993.
[http://dx.doi.org/10.1002/jcc.20025] [PMID: 15027110]
[54]
Özen, A.; Haliloğlu, T.; Schiffer, C.A. Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope. J. Mol. Biol., 2011, 410(4), 726-744.
[http://dx.doi.org/10.1016/j.jmb.2011.03.053] [PMID: 21762811]
[55]
Alder, B.J.; Wainwright, T.E. Studies in molecular dynamics. I. General method. J. Chem. Phys., 1959, 31(2), 459-466.
[http://dx.doi.org/10.1063/1.1730376]
[56]
Chellappan, S.; Kiran Kumar Reddy, G.S.; Ali, A.; Nalam, M.N.; Anjum, S.G.; Cao, H.; Kairys, V.; Fernandes, M.X.; Altman, M.D.; Tidor, B.; Rana, T.M.; Schiffer, C.A.; Gilson, M.K. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis. Chem. Biol. Drug Des., 2007, 69(5), 298-313.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00514.x] [PMID: 17539822]
[57]
Altman, M.D.; Ali, A.; Reddy, G.S.; Nalam, M.N.; Anjum, S.G.; Cao, H.; Chellappan, S.; Kairys, V.; Fernandes, M.X.; Gilson, M.K.; Schiffer, C.A.; Rana, T.M.; Tidor, B. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. J. Am. Chem. Soc., 2008, 130(19), 6099-6113.
[http://dx.doi.org/10.1021/ja076558p] [PMID: 18412349]
[58]
Nalam, M.N.; Schiffer, C.A. New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors. Curr. Opin. HIV AIDS, 2008, 3(6), 642-646.
[http://dx.doi.org/10.1097/COH.0b013e3283136cee] [PMID: 19373036]
[59]
Nalam, M.N.; Ali, A.; Altman, M.D.; Reddy, G.S.; Chellappan, S.; Kairys, V.; Ozen, A.; Cao, H.; Gilson, M.K.; Tidor, B.; Rana, T.M.; Schiffer, C.A. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance. J. Virol., 2010, 84(10), 5368-5378.
[http://dx.doi.org/10.1128/JVI.02531-09] [PMID: 20237088]
[60]
Alvizo, O.; Mittal, S.; Mayo, S.L.; Schiffer, C.A. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease. Protein Sci., 2012, 21(7), 1029-1041.
[http://dx.doi.org/10.1002/pro.2086] [PMID: 22549928]
[61]
Dunbrack, R.L., Jr; Cohen, F.E. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci., 1997, 6(8), 1661-1681.
[http://dx.doi.org/10.1002/pro.5560060807] [PMID: 9260279]
[62]
Pettit, S.C.; Henderson, G.J.; Schiffer, C.A.; Swanstrom, R. Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J. Virol., 2002, 76(20), 10226-10233.
[http://dx.doi.org/10.1128/JVI.76.20.10226-10233.2002] [PMID: 12239298]
[63]
Pettit, S.C.; Clemente, J.C.; Jeung, J.A.; Dunn, B.M.; Kaplan, A.H. Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease. J. Virol., 2005, 79(16), 10601-10607.
[http://dx.doi.org/10.1128/JVI.79.16.10601-10607.2005] [PMID: 16051852]
[64]
Beck, Z.Q.; Hervio, L.; Dawson, P.E.; Elder, J.H.; Madison, E.L. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development. Virology, 2000, 274(2), 391-401.
[http://dx.doi.org/10.1006/viro.2000.0420] [PMID: 10964781]
[65]
Rhee, S-Y.; Taylor, J.; Fessel, W.J.; Kaufman, D.; Towner, W.; Troia, P.; Ruane, P.; Hellinger, J.; Shirvani, V.; Zolopa, A.; Shafer, R.W. HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrob. Agents Chemother., 2010, 54(10), 4253-4261.
[http://dx.doi.org/10.1128/AAC.00574-10] [PMID: 20660676]
[66]
Nicholls, A.; Sharp, K.A.; Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 1991, 11(4), 281-296.
[http://dx.doi.org/10.1002/prot.340110407] [PMID: 1758883]
[67]
Tie, Y.; Boross, P.I.; Wang, Y.F.; Gaddis, L.; Liu, F.; Chen, X.; Tozser, J.; Harrison, R.W.; Weber, I.T. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS J., 2005, 272(20), 5265-5277.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04923.x] [PMID: 16218957]
[68]
Özen, A.; Haliloğlu, T.; Schiffer, C.A. HIV-1 protease and substrate coevolution validates the substrate envelope as the substrate recognition pattern. J. Chem. Theory Comput., 2012, 8(2)
[http://dx.doi.org/10.1021/ct200668a] [PMID: 24348205]
[69]
Patick, A.K.; Duran, M.; Cao, Y.; Shugarts, D.; Keller, M.R.; Mazabel, E.; Knowles, M.; Chapman, S.; Kuritzkes, D.R.; Markowitz, M. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from patients treated with the protease inhibitor nelfinavir. Antimicrob. Agents Chemother., 1998, 42(10), 2637-2644.
[http://dx.doi.org/10.1128/AAC.42.10.2637] [PMID: 9756769]
[70]
Pai, V.B.; Nahata, M.C. Nelfinavir mesylate: a protease inhibitor. Ann. Pharmacother., 1999, 33(3), 325-339.
[http://dx.doi.org/10.1345/aph.18089] [PMID: 10200859]
[71]
Özer, N.; Özen, A.; Schiffer, C.A.; Haliloğlu, T. Drug-resistant HIV-1 protease regains functional dynamics through cleavage site coevolution. Evol. Appl., 2015, 8(2), 185-198.
[http://dx.doi.org/10.1111/eva.12241] [PMID: 25685193]
[72]
Atilgan, A.R.; Durell, S.R.; Jernigan, R.L.; Demirel, M.C.; Keskin, O.; Bahar, I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J., 2001, 80(1), 505-515.
[http://dx.doi.org/10.1016/S0006-3495(01)76033-X] [PMID: 11159421]
[73]
Laco, G.S. HIV-1 protease substrate-groove: Role in substrate recognition and inhibitor resistance. Biochimie, 2015, 118, 90-103.
[http://dx.doi.org/10.1016/j.biochi.2015.08.009] [PMID: 26300060]
[74]
Wang, Y.; Dewdney, T.G.; Liu, Z.; Reiter, S.J.; Brunzelle, J.S.; Kovari, I.A.; Kovari, L.C. Higher desolvation energy reduces molecular recognition in multi-drug resistant HIV-1 protease. Biology (Basel), 2012, 1(1), 81-93.
[http://dx.doi.org/10.3390/biology1010081] [PMID: 24832048]
[75]
Laco, G.S. Retroviral proteases: correlating substrate recognition with both selected and native inhibitor resistance. J. Mol. Biochem., 2017, 6(2)
[76]
Liu, Z.; Wang, Y.; Brunzelle, J.; Kovari, I.A.; Kovari, L.C. Nine crystal structures determine the substrate envelope of the MDR HIV-1 protease. Protein J., 2011, 30(3), 173-183.
[http://dx.doi.org/10.1007/s10930-011-9316-2] [PMID: 21394574]
[77]
Yedidi, R.S.; Proteasa, G.; Martinez, J.L.; Vickrey, J.F.; Martin, P.D.; Wawrzak, Z.; Liu, Z.; Kovari, I.A.; Kovari, L.C. Contribution of the 80s loop of HIV-1 protease to the multidrug-resistance mechanism: crystallographic study of MDR769 HIV-1 protease variants. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 6), 524-532.
[http://dx.doi.org/10.1107/S0907444911011541] [PMID: 21636892]
[78]
Liu, Z.; Wang, Y.; Yedidi, R.S.; Dewdney, T.G.; Reiter, S.J.; Brunzelle, J.S.; Kovari, I.A.; Kovari, L.C. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes. Biochem. Biophys. Res. Commun., 2013, 430(3), 1022-1027.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.045] [PMID: 23261453]
[79]
Deshmukh, L. Binding kinetics and substrate selectivity in HIV-1 protease−Gag interactions probed at atomic resolution by chemical exchange NMR. Proceedings of the National Academy of Sciences, 2017.
[http://dx.doi.org/10.1073/pnas.1716098114]
[80]
Maschera, B.; Darby, G.; Palú, G.; Wright, L.L.; Tisdale, M.; Myers, R.; Blair, E.D.; Furfine, E.S. Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J. Biol. Chem., 1996, 271(52), 33231-33235.
[http://dx.doi.org/10.1074/jbc.271.52.33231] [PMID: 8969180]
[81]
Tözsér, J.; Bagossi, P.; Weber, I.T.; Copeland, T.D.; Oroszlan, S. Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. J. Biol. Chem., 1996, 271(12), 6781-6788.
[http://dx.doi.org/10.1074/jbc.271.12.6781] [PMID: 8636100]
[82]
Fehér, A.; Weber, I.T.; Bagossi, P.; Boross, P.; Mahalingam, B.; Louis, J.M.; Copeland, T.D.; Torshin, I.Y.; Harrison, R.W.; Tözsér, J. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Eur. J. Biochem., 2002, 269(16), 4114-4120.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03105.x] [PMID: 12180988]
[83]
Tözsér, J.; Gustchina, A.; Weber, I.T.; Blaha, I.; Wondrak, E.M.; Oroszlan, S. Studies on the role of the S4 substrate binding site of HIV proteinases. FEBS Lett., 1991, 279(2), 356-360.
[http://dx.doi.org/10.1016/0014-5793(91)80186-7] [PMID: 2001747]
[84]
Altman, M.D.; Nalivaika, E.A.; Prabu-Jeyabalan, M.; Schiffer, C.A.; Tidor, B. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins, 2008, 70(3), 678-694.
[http://dx.doi.org/10.1002/prot.21514] [PMID: 17729291]
[85]
Tripathi, A.; Fornabaio, M.; Spyrakis, F.; Mozzarelli, A.; Cozzini, P.; Kellogg, G.E. Complexity in modeling and understanding protonation states: computational titration of HIV-1-protease-inhibitor complexes. Chem. Biodivers., 2007, 4(11), 2564-2577.
[http://dx.doi.org/10.1002/cbdv.200790210] [PMID: 18027371]
[86]
Weber, I.T.; Waltman, M.J.; Mustyakimov, M.; Blakeley, M.P.; Keen, D.A.; Ghosh, A.K.; Langan, P.; Kovalevsky, A.Y. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir: insights for drug design. J. Med. Chem., 2013, 56(13), 5631-5635.
[http://dx.doi.org/10.1021/jm400684f] [PMID: 23772563]
[87]
Gerlits, O.; Wymore, T.; Das, A.; Shen, C.H.; Parks, J.M.; Smith, J.C.; Weiss, K.L.; Keen, D.A.; Blakeley, M.P.; Louis, J.M.; Langan, P.; Weber, I.T.; Kovalevsky, A. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site. Angew. Chem. Int. Ed. Engl., 2016, 55(16), 4924-4927.
[http://dx.doi.org/10.1002/anie.201509989] [PMID: 26958828]
[88]
Yamazaki, T. NMR and X-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a non-peptide cyclic urea-based inhibitor. J. Am. Chem. Soc., 1994, 116(23), 10791-10792.
[http://dx.doi.org/10.1021/ja00102a057]
[89]
Smith, R.; Brereton, I.M.; Chai, R.Y.; Kent, S.B. Ionization states of the catalytic residues in HIV-1 protease. Nat. Struct. Biol., 1996, 3(11), 946-950.
[http://dx.doi.org/10.1038/nsb1196-946] [PMID: 8901873]
[90]
Wang, Y.X.; Freedberg, D.I.; Yamazaki, T.; Wingfield, P.T.; Stahl, S.J.; Kaufman, J.D.; Kiso, Y.; Torchia, D.A. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. Biochemistry, 1996, 35(31), 9945-9950.
[http://dx.doi.org/10.1021/bi961268z] [PMID: 8756455]
[91]
Yu, N.; Hayik, S.A.; Wang, B.; Liao, N.; Reynolds, C.H.; Merz, K.M. Jr Assigning the protonation states of the key aspartates in β-Secretase using QM/MM X-ray structure refinement. J. Chem. Theory Comput., 2006, 2(4), 1057-1069.
[http://dx.doi.org/10.1021/ct0600060] [PMID: 19079786]
[92]
Makatini, M.M.; Petzold, K.; Sriharsha, S.N.; Ndlovu, N.; Soliman, M.E.; Honarparvar, B.; Parboosing, R.; Naidoo, A.; Arvidsson, P.I.; Sayed, Y.; Govender, P.; Maguire, G.E.; Kruger, H.G.; Govender, T. Synthesis and structural studies of pentacycloundecane-based HIV-1 PR inhibitors: a hybrid 2D NMR and docking/QM/MM/MD approach. Eur. J. Med. Chem., 2011, 46(9), 3976-3985.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.071] [PMID: 21741133]
[93]
Ribeiro, A.J.M. Enzymatic Flexibility and Reaction Rate: A QM/MM Study of HIV-1 Protease. ACS Catal., 2015, 5(9), 5617-5626.
[http://dx.doi.org/10.1021/acscatal.5b00759]
[94]
Okimoto, N. Molecular Dynamics Study of HIV-1 Protease− Substrate Complex: Roles of the Water Molecules at the Loop Structures of the Active Site. J. Am. Chem. Soc., 2000, 122(23), 5613-5622.
[http://dx.doi.org/10.1021/ja9929178]
[95]
Okimoto, N. Molecular dynamics simulations of a complex of HIV-1 protease and substrate: substrate-dependent efficiency of catalytic activity. J. Mol. Struct. THEOCHEM, 2001, 543(1), 53-63.
[http://dx.doi.org/10.1016/S0166-1280(00)00834-4]
[96]
Itoh, S.G.; Damjanovic, A.; Brooks, B.R. pH Replica-Exchange Method Based on Discrete Protonation States. Biophys. J., 2012, 102(3), 40a-40a.
[http://dx.doi.org/10.1016/j.bpj.2011.11.246]
[97]
Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins, 2005, 61(4), 704-721.
[http://dx.doi.org/10.1002/prot.20660] [PMID: 16231289]
[98]
Dolinsky, T.J. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucle-ic Acids Research, 2007, 35(suppl_2), W522-W525.
[99]
Gordon, J.C. Nucleic Acids Research 2005, 33(suppl_2), W368-W371.
[100]
McGee, T.D., Jr; Edwards, J.; Roitberg, A.E. pH-REMD simulations indicate that the catalytic aspartates of HIV-1 protease exist primarily in a monoprotonated state. J. Phys. Chem. B, 2014, 118(44), 12577-12585.
[http://dx.doi.org/10.1021/jp504011c] [PMID: 25340507]
[101]
Piana, S.; Carloni, P. Conformational flexibility of the catalytic Asp dyad in HIV-1 protease: An ab initio study on the free enzyme. Proteins, 2000, 39(1), 26-36.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000401)39:1<26:AID-PROT3>3.0.CO;2-N] [PMID: 10737924]
[102]
Dodson, G.; Wlodawer, A. Catalytic triads and their relatives. Trends Biochem. Sci., 1998, 23(9), 347-352.
[http://dx.doi.org/10.1016/S0968-0004(98)01254-7] [PMID: 9787641]
[103]
Makatini, M.M.; Petzold, K.; Sriharsha, S.N.; Soliman, M.E.; Honarparvar, B.; Arvidsson, P.I.; Sayed, Y.; Govender, P.; Maguire, G.E.; Kruger, H.G.; Govender, T. Pentacycloundecane-based inhibitors of wild-type C-South African HIV-protease. Bioorg. Med. Chem. Lett., 2011, 21(8), 2274-2277.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.105] [PMID: 21429747]
[104]
Meek, T.D.; Dayton, B.D.; Metcalf, B.W.; Dreyer, G.B.; Strickler, J.E.; Gorniak, J.G.; Rosenberg, M.; Moore, M.L.; Magaard, V.W.; Debouck, C. Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease. Proc. Natl. Acad. Sci. USA, 1989, 86(6), 1841-1845.
[http://dx.doi.org/10.1073/pnas.86.6.1841] [PMID: 2648384]
[105]
Harte, W.E., Jr; Beveridge, D.L. Prediction of the protonation state of the active site aspartyl residues in HIV-1 protease-inhibitor complexes via molecular dynamics simulation. J. Am. Chem. Soc., 1993, 115(10), 3883-3886.
[http://dx.doi.org/10.1021/ja00063a005]
[106]
Piana, S.; Sebastiani, D.; Carloni, P.; Parrinello, M. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site. J. Am. Chem. Soc., 2001, 123(36), 8730-8737.
[http://dx.doi.org/10.1021/ja003145e] [PMID: 11535077]
[107]
Piana, S.; Carloni, P.; Rothlisberger, U. Drug resistance in HIV-1 protease: Flexibility-assisted mechanism of compensatory mutations. Protein Sci., 2002, 11(10), 2393-2402.
[http://dx.doi.org/10.1110/ps.0206702] [PMID: 12237461]
[108]
Piana, S.; Carloni, P.; Parrinello, M. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. J. Mol. Biol., 2002, 319(2), 567-583.
[http://dx.doi.org/10.1016/S0022-2836(02)00301-7] [PMID: 12051929]
[109]
Northrop, D.B. Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Accounts. Chem. Res., 2001, 34(10), 790-797.
[http://dx.doi.org/10.1021/ar000184m] [PMID: 11601963]
[110]
Becke, A.D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys., 1993, 98(2), 1372-1377.
[http://dx.doi.org/10.1063/1.464304]
[111]
Rassolov, V.A. 6‐31G* basis set for third‐row atoms. J. Comput. Chem., 2001, 22(9), 976-984.
[http://dx.doi.org/10.1002/jcc.1058]
[112]
Bjelic, S.; Aqvist, J. Catalysis and linear free energy relationships in aspartic proteases. Biochemistry, 2006, 45(25), 7709-7723.
[http://dx.doi.org/10.1021/bi060131y] [PMID: 16784222]
[113]
Chatfield, D.C.; Brooks, B.R. HIV-1 protease cleavage mechanism elucidated with molecular-dynamics simulation. J. Am. Chem. Soc., 1995, 117(20), 5561-5572.
[http://dx.doi.org/10.1021/ja00125a018]
[114]
Trylska, J.; Grochowski, P.; McCammon, J.A. The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease. Protein Sci., 2004, 13(2), 513-528.
[http://dx.doi.org/10.1110/ps.03372304] [PMID: 14739332]
[115]
Rodriguez, E.J.; Angeles, T.S.; Meek, T.D. Use of nitrogen-15 kinetic isotope effects to elucidate details of the chemical mechanism of human immunodeficiency virus 1 protease. Biochemistry, 1993, 32(46), 12380-12385.
[http://dx.doi.org/10.1021/bi00097a015] [PMID: 8241126]
[116]
Lee, H.; Darden, T.A.; Pedersen, L.G. An ab initio quantum mechanical model for the catalytic mechanism of HIV-1 protease. J. Am. Chem. Soc., 1996, 118(16), 3946-3950.
[http://dx.doi.org/10.1021/ja9513188]
[117]
Liu, H.; Müller-Plathe, F.; van Gunsteren, W.F. A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease. J. Mol. Biol., 1996, 261(3), 454-469.
[http://dx.doi.org/10.1006/jmbi.1996.0476] [PMID: 8780786]
[118]
Silva, A.M.; Cachau, R.E.; Sham, H.L.; Erickson, J.W. Inhibition and catalytic mechanism of HIV-1 aspartic protease. J. Mol. Biol., 1996, 255(2), 321-346.
[http://dx.doi.org/10.1006/jmbi.1996.0026] [PMID: 8551523]
[119]
Okimoto, N. Gag protein hydrolysis mechanism by HIV-1 protease - Investigation by semiempirical molecular orbital method. Nippon Kagaku Kaishi, 1997, (4), 260-266.
[http://dx.doi.org/10.1246/nikkashi.1997.260]
[120]
Okimoto, N. Hydrolysis mechanism of the phenylalanine-proline peptide bond specific to HIV-1 protease: Investigation by the ab initio molecular orbital method. J. Am. Chem. Soc., 1999, 121(32), 7349-7354.
[http://dx.doi.org/10.1021/ja9841106]
[121]
Trylska, J.; Bała, P.; Geller, M.; Grochowski, P. Molecular dynamics simulations of the first steps of the reaction catalyzed by HIV-1 protease. Biophys. J., 2002, 83(2), 794-807.
[http://dx.doi.org/10.1016/S0006-3495(02)75209-0] [PMID: 12124265]
[122]
Krzemińska, A.; Moliner, V.; Świderek, K. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease. J. Am. Chem. Soc., 2016, 138(50), 16283-16298.
[http://dx.doi.org/10.1021/jacs.6b06856] [PMID: 27935692]
[123]
Grochowski, P. Density functional based parametrization of a valence bond method and its applications in quantum‐classical molecular dynamics simulations of enzymatic reactions. Int. J. Quantum Chem., 1996, 60(6), 1143-1164.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:6<1143:AID-QUA4>3.0.CO;2-#]
[124]
Trylska, J.; Grochowski, P.; Geller, M. Parameterization of the approximate valence bond (AVB) method to describe potential energy surface in the reaction catalyzed by HIV-1 protease. Int. J. Quantum Chem., 2001, 82(2), 86-103.
[http://dx.doi.org/10.1002/1097-461X(2001)82:2<86:AID-QUA1024>3.0.CO;2-E]
[125]
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B), B864.
[http://dx.doi.org/10.1103/PhysRev.136.B864]
[126]
Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev., 1934, 46(7), 618.
[http://dx.doi.org/10.1103/PhysRev.46.618]
[127]
Hyland, L.J.; Tomaszek, T.A., Jr; Roberts, G.D.; Carr, S.A.; Magaard, V.W.; Bryan, H.L.; Fakhoury, S.A.; Moore, M.L.; Minnich, M.D.; Culp, J.S. Human immunodeficiency virus-1 protease. 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange. Biochemistry, 1991, 30(34), 8441-8453.
[http://dx.doi.org/10.1021/bi00098a023] [PMID: 1883830]
[128]
Hyland, L.J.; Tomaszek, T.A., Jr; Meek, T.D. Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry, 1991, 30(34), 8454-8463.
[http://dx.doi.org/10.1021/bi00098a024] [PMID: 1883831]
[129]
Antonov, V.K.; Ginodman, L.M.; Kapitannikov, Y.V.; Barshevskaya, T.N.; Gurova, A.G.; Rumsh, L.D. Mechanism of pepsin catalysis: general base catalysis by the active-site carboxylate ion. FEBS Lett., 1978, 88(1), 87-90.
[http://dx.doi.org/10.1016/0014-5793(78)80613-9] [PMID: 346376]
[130]
Antonov, V.K.; Ginodman, L.M.; Rumsh, L.D.; Kapitannikov, Y.V.; Barshevskaya, T.N.; Yavashev, L.P.; Gurova, A.G.; Volkova, L.I. Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur. J. Biochem., 1981, 117(1), 195-200.
[http://dx.doi.org/10.1111/j.1432-1033.1981.tb06321.x] [PMID: 6790282]
[131]
Kumar, M.; Prashar, V.; Mahale, S.; Hosur, M.V. Observation of a tetrahedral reaction intermediate in the HIV-1 protease-substrate complex. Biochem. J., 2005, 389(Pt 2), 365-371.
[http://dx.doi.org/10.1042/BJ20041804] [PMID: 15794743]
[132]
Kipp, D.R.; Hirschi, J.S.; Wakata, A.; Goldstein, H.; Schramm, V.L. Transition states of native and drug-resistant HIV-1 protease are the same. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17), 6543-6548.
[http://dx.doi.org/10.1073/pnas.1202808109] [PMID: 22493227]
[133]
Torrie, G.M.; Valleau, J.P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett., 1974, 28(4), 578-581.
[http://dx.doi.org/10.1016/0009-2614(74)80109-0]
[134]
Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(6), 932-942.
[http://dx.doi.org/10.1002/wcms.66]
[135]
Laio, A.; VandeVondele, J.; Rothlisberger, U. A Hamiltonian electrostatic coupling scheme for hybrid Car–Parrinello molecular dynamics simulations. J. Chem. Phys., 2002, 116(16), 6941-6947.
[http://dx.doi.org/10.1063/1.1462041]
[136]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[137]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[138]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1), 15-50.
[http://dx.doi.org/10.1016/0927-0256(96)00008-0]
[139]
Miller, M.; Schneider, J.; Sathyanarayana, B.K.; Toth, M.V.; Marshall, G.R.; Clawson, L.; Selk, L.; Kent, S.B.; Wlodawer, A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science, 1989, 246(4934), 1149-1152.
[http://dx.doi.org/10.1126/science.2686029] [PMID: 2686029]
[140]
Schock, H.B.; Garsky, V.M.; Kuo, L.C. Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity. J. Biol. Chem., 1996, 271(50), 31957-31963.
[http://dx.doi.org/10.1074/jbc.271.50.31957] [PMID: 8943242]
[141]
Aqvist, J.; Warshel, A. Simulation of Enzyme-Reactions using Valence-Bond Force-Fields and other Hybrid Quantum-Classical Approaches. Chem. Rev., 1993, 93(7), 2523-2544.
[http://dx.doi.org/10.1021/cr00023a010]
[142]
Kamerlin, S.C.L.; Warshel, A. The empirical valence bond model: theory and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(1), 30-45.
[http://dx.doi.org/10.1002/wcms.10]
[143]
Warshel, A. Computer modeling of chemical reactions in enzymes and solutions; Wiley New York, 1991.
[144]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys. Chem., 2018, 240, 63-69.
[http://dx.doi.org/10.1016/j.bpc.2018.05.010] [PMID: 29906639]
[145]
Lima, A.N.; Philot, E.A.; Trossini, G.H.; Scott, L.P.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
[http://dx.doi.org/10.1517/17460441.2016.1146250] [PMID: 26814169]
[146]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[147]
Cascella, M.; Micheletti, C.; Rothlisberger, U.; Carloni, P. Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases. J. Am. Chem. Soc., 2005, 127(11), 3734-3742.
[http://dx.doi.org/10.1021/ja044608+] [PMID: 15771507]
[148]
Schramm, V.L. Transition States, analogues, and drug development. ACS Chem. Biol., 2013, 8(1), 71-81.
[http://dx.doi.org/10.1021/cb300631k] [PMID: 23259601]
[149]
Kipp, D.R.; Silva, R.G.; Schramm, V.L. Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease. J. Am. Chem. Soc., 2011, 133(48), 19358-19361.
[http://dx.doi.org/10.1021/ja209391n] [PMID: 22059645]
[150]
Torbeev, V.Y.; Raghuraman, H.; Hamelberg, D.; Tonelli, M.; Westler, W.M.; Perozo, E.; Kent, S.B. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 20982-20987.
[http://dx.doi.org/10.1073/pnas.1111202108] [PMID: 22158985]
[151]
Polgár, L.; Szeltner, Z.; Boros, I. Substrate-dependent mechanisms in the catalysis of human immunodeficiency virus protease. Biochemistry, 1994, 33(31), 9351-9357.
[http://dx.doi.org/10.1021/bi00197a040] [PMID: 8049236]
[152]
Becke, A.D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys., 1992, 96(3), 2155-2160.
[http://dx.doi.org/10.1063/1.462066]
[153]
Kovalevsky, A.Y.; Chumanevich, A.A.; Liu, F.; Louis, J.M.; Weber, I.T. Caught in the Act: the 1.5 A resolution crystal structures of the HIV-1 protease and the I54V mutant reveal a tetrahedral reaction intermediate. Biochemistry, 2007, 46(51), 14854-14864.
[http://dx.doi.org/10.1021/bi700822g] [PMID: 18052235]
[154]
Shen, C.H.; Tie, Y.; Yu, X.; Wang, Y.F.; Kovalevsky, A.Y.; Harrison, R.W.; Weber, I.T. Capturing the reaction pathway in near-atomic-resolution crystal structures of HIV-1 protease. Biochemistry, 2012, 51(39), 7726-7732.
[http://dx.doi.org/10.1021/bi3008092] [PMID: 22963370]
[155]
Darden, T.; Perera, L.; Li, L.; Pedersen, L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 1999, 7(3), R55-R60.
[http://dx.doi.org/10.1016/S0969-2126(99)80033-1] [PMID: 10368306]
[156]
Godbout, N. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem., 1992, 70(2), 560-571.
[http://dx.doi.org/10.1139/v92-079]
[157]
Binkley, J.S.; Pople, J.A.; Hehre, W.J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc., 1980, 102(3), 939-947.
[http://dx.doi.org/10.1021/ja00523a008]
[158]
Gordon, M.S. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc., 1982, 104(10), 2797-2803.
[http://dx.doi.org/10.1021/ja00374a017]
[159]
Hehre, W.J.; Stewart, R.F.; Pople, J.A. self‐consistent molecular‐orbital methods. i. use of gaussian expansions of Slater‐type atomic orbitals. J. Chem. Phys., 1969, 51(6), 2657-2664.
[http://dx.doi.org/10.1063/1.1672392]
[160]
Collins, J.B. Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets. J. Chem. Phys., 1976, 64(12), 5142-5151.
[http://dx.doi.org/10.1063/1.432189]
[161]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012.
[http://dx.doi.org/10.1002/jcc.10349] [PMID: 14531054]
[162]
Gerritzen, D. Limba, and H.-H., NMR Spectroscopy. J. Am. Chem. Soc., 1984, 106(4), 869-879.
[http://dx.doi.org/10.1021/ja00316a007]
[163]
Cleland, W.W. Low-barrier hydrogen bonds and enzymatic catalysis. Arch. Biochem. Biophys., 2000, 382(1), 1-5.
[http://dx.doi.org/10.1006/abbi.2000.2011] [PMID: 11051090]
[164]
Kruger, H.G. Ab initio mechanistic study of the protection of alcohols and amines with anhydrides. J. Mol. Struct. THEOCHEM, 2002, 577(2), 281-285.
[http://dx.doi.org/10.1016/S0166-1280(01)00672-8]
[165]
Gokul, V. An ab initio mechanistic understanding of the regioselective acetylation of 8,11-dihydroxy-pentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)] undecane-8,11-lactam. J. Mol. Struct. THEOCHEM, 2004, 672(1-3), 119-125.
[http://dx.doi.org/10.1016/j.theochem.2003.11.011]
[166]
Kruger, H.G. Experimental and computational studies of the regioselective protection of hydantoins using anhydride. J. Mol. Struct. THEOCHEM, 2006, 771(1-3), 165-170.
[http://dx.doi.org/10.1016/j.theochem.2006.03.037]
[167]
Singh, T. Theoretical study on the formation of a pentacyclo-undecane cage lactam. Comput. Theor. Chem., 2012, 986, 63-70.
[http://dx.doi.org/10.1016/j.comptc.2012.02.011]
[168]
Md Abdur Rauf, S.; Arvidsson, P.I.; Albericio, F.; Govender, T.; Maguire, G.E.; Kruger, H.G.; Honarparvar, B. The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: a DFT study. Org. Biomol. Chem., 2015, 13(39), 9993-10006.
[http://dx.doi.org/10.1039/C5OB01565K] [PMID: 26289381]
[169]
Lawal, M.M.; Govender, T.; Maguire, G.E.; Honarparvar, B.; Kruger, H.G. Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study. J. Mol. Model., 2016, 22(10), 235.
[http://dx.doi.org/10.1007/s00894-016-3084-z] [PMID: 27604278]
[170]
Fakhar, Z. Computational model for the acylation step of the β-lactam ring: Potential application for l, d-transpeptidase 2 in mycobacterium tuberculosis. J. Mol. Struct., 2017, 1128, 94-102.
[http://dx.doi.org/10.1016/j.molstruc.2016.08.049]
[171]
Rose, R.B.; Craik, C.S.; Douglas, N.L.; Stroud, R.M. Three-dimensional structures of HIV-1 and SIV protease product complexes. Biochemistry, 1996, 35(39), 12933-12944.
[http://dx.doi.org/10.1021/bi9612733] [PMID: 8841139]
[172]
Das, A.; Prashar, V.; Mahale, S.; Serre, L.; Ferrer, J.L.; Hosur, M.V. Crystal structure of HIV-1 protease in situ product complex and observation of a low-barrier hydrogen bond between catalytic aspartates. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18464-18469.
[http://dx.doi.org/10.1073/pnas.0605809103] [PMID: 17116869]
[173]
Brünger, A.T.; Adams, P.D.; Clore, G.M.; DeLano, W.L.; Gros, P.; Grosse-Kunstleve, R.W.; Jiang, J.S.; Kuszewski, J.; Nilges, M.; Pannu, N.S.; Read, R.J.; Rice, L.M.; Simonson, T.; Warren, G.L. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr., 1998, 54(Pt 5), 905-921.
[http://dx.doi.org/10.1107/S0907444998003254] [PMID: 9757107]
[174]
Bihani, S.; Das, A.; Prashar, V.; Ferrer, J.L.; Hosur, M.V. X-ray structure of HIV-1 protease in situ product complex. Proteins, 2009, 74(3), 594-602.
[http://dx.doi.org/10.1002/prot.22174] [PMID: 18704947]
[175]
Kumar, M.; Kannan, K.K.; Hosur, M.V.; Bhavesh, N.S.; Chatterjee, A.; Mittal, R.; Hosur, R.V. Effects of remote mutation on the autolysis of HIV-1 PR: X-ray and NMR investigations. Biochem. Biophys. Res. Commun., 2002, 294(2), 395-401.
[http://dx.doi.org/10.1016/S0006-291X(02)00482-5] [PMID: 12051725]
[176]
Prashar, V.; Bihani, S.; Das, A.; Ferrer, J.L.; Hosur, M. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis. PLoS One, 2009, 4(11), e7860
[http://dx.doi.org/10.1371/journal.pone.0007860] [PMID: 19924250]
[177]
Das, A.; Mahale, S.; Prashar, V.; Bihani, S.; Ferrer, J.L.; Hosur, M.V. X-ray snapshot of HIV-1 protease in action: observation of tetrahedral intermediate and short ionic hydrogen bond SIHB with catalytic aspartate. J. Am. Chem. Soc., 2010, 132(18), 6366-6373.
[http://dx.doi.org/10.1021/ja100002b] [PMID: 20397633]
[178]
Ichikawa, M. The C–O vs O–H length correlation in hydrogen-bonded carboxyl groups. Acta Crystallogr. B, 1979, 35(5), 1300-1301.
[http://dx.doi.org/10.1107/S0567740879006282]
[179]
Mittal, S.; Cai, Y.F.; Nalam, M.N.L.; Bolon, D.N.A.; Schiffer, C.A. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease. In: J. Am. Chem. Soc; Christov, C.; KarabenchevaChristova, T., Eds.. , 2012; 134, pp. (9)4163-4168.
[180]
Weber, I.T. Reaction Intermediates Discovered in Crystal Structures of Enzymes, in Structural and Mechanistic Enzymology In: Bringing Together Experiments and Computing; Christov, C.; KarabenchevaChristova, T., Eds.. 57.
[http://dx.doi.org/10.1021/ja2095766]
[181]
Calixto, A.R.; Ramos, M.J.; Fernandes, P.A. Influence of frozen residues on the exploration of the PES of enzyme reaction mechanisms. J. Chem. Theory Comput., 2017, 13(11), 5486-5495.
[http://dx.doi.org/10.1021/acs.jctc.7b00768] [PMID: 28992703]
[182]
Mahalingam, A.K.; Axelsson, L.; Ekegren, J.K.; Wannberg, J.; Kihlström, J.; Unge, T.; Wallberg, H.; Samuelsson, B.; Larhed, M.; Hallberg, A. HIV-1 protease inhibitors with a transition-state mimic comprising a tertiary alcohol: improved antiviral activity in cells. J. Med. Chem., 2010, 53(2), 607-615.
[http://dx.doi.org/10.1021/jm901165g] [PMID: 19961222]
[183]
Carnevale, V. On the nature of the reaction intermediate in the HIV-1 protease: a quantum chemical study. Comput. Phys. Commun., 2008, 179(1-3), 120-123.
[http://dx.doi.org/10.1016/j.cpc.2008.01.032]
[184]
Svensson, M. ONIOM: a multilayered integrated MO+ MM method for geometry optimizations and single point energy predictions. A test for Diels− Alder reactions and Pt (P (t-Bu) 3) 2+ H2 oxidative addition. J. Phys. Chem., 1996, 100(50), 19357-19363.
[http://dx.doi.org/10.1021/jp962071j]
[185]
Chung, L.W.; Sameera, W.M.; Ramozzi, R.; Page, A.J.; Hatanaka, M.; Petrova, G.P.; Harris, T.V.; Li, X.; Ke, Z.; Liu, F.; Li, H.B.; Ding, L.; Morokuma, K. The ONIOM method and its applications. Chem. Rev., 2015, 115(12), 5678-5796.
[http://dx.doi.org/10.1021/cr5004419] [PMID: 25853797]
[186]
Jaskólski, M.; Tomasselli, A.G.; Sawyer, T.K.; Staples, D.G.; Heinrikson, R.L.; Schneider, J.; Kent, S.B.; Wlodawer, A. Structure at 2.5-A resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry, 1991, 30(6), 1600-1609.
[http://dx.doi.org/10.1021/bi00220a023] [PMID: 1993177]
[187]
Lawal, M.M. DFT study of the acid‐catalyzed esterification reaction mechanism of methanol with carboxylic acid and its halide derivatives. Int. J. Quantum Chem., 2017.
[188]
Wang, Y-X. Bound water molecules at the interface between the HIV-1 protease and a potent inhibitor, KNI-272, determined by NMR. J. Am. Chem. Soc., 1996, 118(49), 12287-12290.
[http://dx.doi.org/10.1021/ja962612i]
[189]
Li, Z.; Lazaridis, T. Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J. Am. Chem. Soc., 2003, 125(22), 6636-6637.
[http://dx.doi.org/10.1021/ja0299203] [PMID: 12769565]
[190]
Ghosh, A.K.; Gemma, S.; Baldridge, A.; Wang, Y.F.; Kovalevsky, A.Y.; Koh, Y.; Weber, I.T.; Mitsuya, H. Flexible cyclic ethers/polyethers as novel P2-ligands for HIV-1 protease inhibitors: design, synthesis, biological evaluation, and protein-ligand X-ray studies. J. Med. Chem., 2008, 51(19), 6021-6033.
[http://dx.doi.org/10.1021/jm8004543] [PMID: 18783203]
[191]
Shen, C.H.; Wang, Y.F.; Kovalevsky, A.Y.; Harrison, R.W.; Weber, I.T. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters. FEBS J., 2010, 277(18), 3699-3714.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07771.x] [PMID: 20695887]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy