Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

The Natural Products as Hydroxymethylglutaryl-Coa Reductase Inhibitors

Author(s): Hayrettin Ozan Gulcan*, Serkan Yigitkan and Ilkay Erdogan Orhan

Volume 16, Issue 10, 2019

Page: [1130 - 1137] Pages: 8

DOI: 10.2174/1570180816666181112144353

Price: $65

Abstract

High cholesterol and triglyceride levels are mainly related to further generation of lifethreating metabolism disorders including cardiovascular system diseases. Therefore, hypercholesterolemia (i.e., also referred to as hyperlipoproteinemia) is a serious disease state, which must be controlled. Currently, the treatment of hypercholesterolemia is mainly achieved through the employment of statins in the clinic, although there are alternative drugs (e.g., ezetimibe, cholestyramine). In fact, the original statins are natural products directly obtained from fungi-like molds and mushrooms and they are potent inhibitors of hydroxymethylglutaryl-CoA reductase, the key enzyme in the biosynthesis of cholesterol. This review focuses on the first identification of natural statins, their synthetic and semi-synthetic analogues, and the validation of hydroxymethylglutaryl-CoA reductase as a target in the treatment of hypercholesterolemia. Furthermore, other natural products that have been shown to possess the potential to inhibit hydroxymethylglutaryl-CoA reductase are also reviewed with respect to their chemical structures.

Keywords: HMG-CoA reductase, enzyme inhibition, hypercholesterolemia, natural products, statins, cholesterol.

Graphical Abstract

[1]
Kawachi, T.; Rudney, H. Solubilization and purification of β-hydroxy-β-methylglutaryl coenzyme A reductase from rat liver. Biochemistry, 1970, 9(8), 1700-1705.
[http://dx.doi.org/10.1021/bi00810a008] [PMID: 4985697]
[2]
Mukherjee, V.; Vijayalaksmi, D.; Gulipalli, J.; Premalatha, R.; Sufi, S.A.; Velan, A.; Srikumar, K. A plant oxysterol, 28-homobrassinolide binds HMGCoA reductase catalytic cleft: stereoselective avidity affects enzyme function. Mol. Biol. Rep., 2016, 43(10), 1049-1058.
[http://dx.doi.org/10.1007/s11033-016-4052-5] [PMID: 27585573]
[3]
Horiuchi, N.; Maeda, T. Statins and bone metabolism. Oral Dis., 2006, 12(2), 85-101.
[http://dx.doi.org/10.1111/j.1601-0825.2005.01172.x] [PMID: 16476028]
[4]
Sarver, R.W.; Bills, E.; Bolton, G.; Bratton, L.D.; Caspers, N.L.; Dunbar, J.B.; Harris, M.S.; Hutchings, R.H.; Kennedy, R.M.; Larsen, S.D.; Pavlovsky, A.; Pfefferkorn, J.A.; Bainbridge, G. Thermodynamic and structure guided design of statin based inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Med. Chem., 2008, 51(13), 3804-3813.
[http://dx.doi.org/10.1021/jm7015057] [PMID: 18540668]
[5]
Pender, A.; Lloyd-Jones, D.M.; Stone, N.J.; Greenland, P. Refining statin prescribing in lower-risk individuals: informing risk/benefit decisions. J. Am. Coll. Cardiol., 2016, 68(15), 1690-1697.
[http://dx.doi.org/10.1016/j.jacc.2016.07.753] [PMID: 27712783]
[6]
Stossel, T.P. The discovery of statins. Cell, 2008, 134(6), 903-905.
[http://dx.doi.org/10.1016/j.cell.2008.09.008] [PMID: 18805080]
[7]
Othman, R.A.; Myrie, S.B.; Jones, P.J.H. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia. Atherosclerosis, 2013, 231(2), 291-299.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.09.038] [PMID: 24267242]
[8]
Babu, S.; Li, Y. Statin induced necrotizing autoimmune myopathy. J. Neurol. Sci., 2015, 351(1-2), 13-17.
[http://dx.doi.org/10.1016/j.jns.2015.02.042] [PMID: 25765229]
[9]
Hedenmalm, K.; Granberg, A.G.; Dahl, M.L. Statin-induced muscle toxicity and susceptibility to malignant hyperthermia and other muscle diseases: a population-based case-control study including 1st and 2nd degree relatives. Eur. J. Clin. Pharmacol., 2015, 71(1), 117-124.
[http://dx.doi.org/10.1007/s00228-014-1776-9] [PMID: 25367069]
[10]
Mirza, Z.B.; Hu, S.; Amorosa, L.F. Bone scintigraphy of severe hypercalcemia following simvastatin induced rhabdomyolysis. Clin. Cases Miner. Bone Metab., 2016, 13(3), 257-261.
[http://dx.doi.org/10.11138/ccmbm/2016.13.3.257] [PMID: 28228795]
[11]
Ramkumar, S.; Raghunath, A.; Raghunath, S. Statin therapy: review of safety and potential side effects. Acta. Acta Cardiol Sin, 2016, 32(6), 631-639.
[PMID: 27899849]
[12]
Björnsson, E.S. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int., 2017, 37(2), 173-178.
[http://dx.doi.org/10.1111/liv.13308] [PMID: 27860156]
[13]
Verma, R.K.; Goswami, S.; Singh, A.P.; Tripathi, P.; Ojha, G.; Rai, M. A review on Hypoglycemic, Hypolipidemic and Anti-obesity effect of Allium Sativum. J Chemi. Pharmaceu Sci, 2014, 7(8), 321-329.
[14]
Gebhardt, R. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J. Pharmacol. Exp. Ther., 1998, 286(3), 1122-1128.
[PMID: 9732368]
[15]
Ramírez, A.G.; García, L.A.; Palanisamy, M.; Jiverdeanu, R.M.; Rodríguez, A.R.; Marín, F.R.; Reglero, G.; Rivas, C.S. Sterol enriched fractions obtained from Agaricus bisporus fruiting bodies and by-products by compressed fluid technologies (PLE and SFE). Innov. Food Sci. Emerg. Technol., 2013, 18, 101-107.
[http://dx.doi.org/10.1016/j.ifset.2013.01.007]
[16]
Xie, W.; Wang, W.; Su, H.; Xing, D.; Cai, G.; Du, L. Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: different from fibrates but similar to statins. J. Pharmacol. Sci., 2007, 103(3), 267-274.
[http://dx.doi.org/10.1254/jphs.FP0061244] [PMID: 17380035]
[17]
Al-Snafi, A.E. Therapeutic properties of medicinal plants: a review of plants with hypolipidemic, hemostatic, fibrinolytic and anticoagulant effects (part 1). Asian Journal of Pharmaceutical Science & Technology, 2015, 5(4), 271-284.
[18]
Witkop, B. Remembering Heinrich Wieland (1877-1957). Portrait of an organic chemist and founder of modern biochemistry. Med. Res. Rev., 1992, 12(3), 195-274.
[http://dx.doi.org/10.1002/med.2610120303] [PMID: 1578969]
[19]
Wolf, G. The discovery of vitamin D: the contribution of Adolf Windaus. J. Nutr., 2004, 134(6), 1299-1302.
[http://dx.doi.org/10.1093/jn/134.6.1299] [PMID: 15173387]
[20]
Cortés, V.; Vásquez, T.; Arteaga, A.; Nervi, F.; Rigotti, A. [The contribution of Goldstein and Brown to the study of cholesterol metabolism Rev. Med. Chil., 2012, 140(8), 1053-1059.
[PMID: 23282781]
[21]
Harvey, L.; Arnold, B.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Phospholipids are the main lipid constituents of most biomembranes.Molecular Cell Biology, 4th ed; W.H. Freeman and Company: New York, 2000.
[22]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[23]
Tanner, W.; Malinsky, J.; Opekarová, M. In plant and animal cells, detergent-resistant membranes do not define functional membrane rafts. Plant Cell, 2011, 23(4), 1191-1193.
[http://dx.doi.org/10.1105/tpc.111.086249] [PMID: 21531862]
[24]
Daniels, T.F.D.; Killinger, K.M.; Michal, J.J.; Wright, R.W., Jr; Jiang, Z. Lipoproteins, cholesterol homeostasis and cardiac health. Int. J. Biol. Sci., 2009, 5(5), 474-488.
[http://dx.doi.org/10.7150/ijbs.5.474] [PMID: 19584955]
[25]
Kruth, H.S. Lipoprotein cholesterol and atherosclerosis. Curr. Mol. Med., 2001, 1(6), 633-653.
[http://dx.doi.org/10.2174/1566524013363212] [PMID: 11899253]
[26]
Lewis, B. Classification of lipoproteins and lipoprotein disorders. J. Clin. Pathol. Suppl. (Assoc Clin Pathol), 1973, 5, 26-31.
[http://dx.doi.org/10.1136/jcp.s1-5.1.26] [PMID: 4354845]
[27]
Tulenko, T.N.; Sumner, A.E. The physiology of lipoproteins. J. Nucl. Cardiol., 2002, 9(6), 638-649.
[http://dx.doi.org/10.1067/mnc.2002.128959] [PMID: 12466789]
[28]
Wiklund, O.; Pirazzi, C.; Romeo, S. Monitoring of lipids, enzymes, and creatine kinase in patients on lipid-lowering drug therapy. Curr. Cardiol. Rep., 2013, 15(9), 397.
[http://dx.doi.org/10.1007/s11886-013-0397-8] [PMID: 23888382]
[29]
Appleton, C.A.; Caldwell, G.; McNeil, A.; Meerkin, M.; Sikaris, K.; Sullivan, D.R.; Thomas, D.W.; Tognarini, D.P. Australian Pathology Lipid Interest Group. Recommendations for lipid testing and reporting by Australian pathology laboratories. Clin. Biochem. Rev., 2007, 28(2), 32-45.
[PMID: 17687413]
[30]
Bloch, K. Summing up. Annu. Rev. Biochem., 1987, 56, 1-19.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.000245] [PMID: 3304130]
[31]
Back, P.; Hamprecht, B.; Lynen, F. Regulation of cholesterol biosynthesis in rat liver: diurnal changes of activity and influence of bile acids. Arch. Biochem. Biophys., 1969, 133(1), 11-21.
[http://dx.doi.org/10.1016/0003-9861(69)90482-2] [PMID: 5810824]
[32]
Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest., 2002, 109(9), 1125-1131.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[33]
Pappu, A.S.; Steiner, R.D.; Connor, S.L.; Flavell, D.P.; Lin, D.S.; Hatcher, L.; Illingworth, D.R.; Connor, W.E. Feedback inhibition of the cholesterol biosynthetic pathway in patients with Smith-Lemli-Opitz syndrome as demonstrated by urinary mevalonate excretion. J. Lipid Res., 2002, 43(10), 1661-1669.
[http://dx.doi.org/10.1194/jlr.M200163-JLR200] [PMID: 12364550]
[34]
Lehoux, J.G.; Lefebvre, A.; Bélisle, S.; Bellabarba, D. On the control of HMG-CoA reductase, a key regulatory enzyme of adrenal cholesterol synthesis. J. Steroid Biochem., 1986, 24(1), 325-329.
[http://dx.doi.org/10.1016/0022-4731(86)90074-9] [PMID: 3009982]
[35]
DeBose-Boyd, R.A. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res., 2008, 18(6), 609-621.
[http://dx.doi.org/10.1038/cr.2008.61] [PMID: 18504457]
[36]
Scallen, T.J.; Sanghvi, A. Regulation of three key enzymes in cholesterol metabolism by phosphorylation/dephosphorylation. Proc. Natl. Acad. Sci. USA, 1983, 80(9), 2477-2480.
[http://dx.doi.org/10.1073/pnas.80.9.2477] [PMID: 6573666]
[37]
Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. (Tokyo), 1976, 29(12), 1346-1348.
[http://dx.doi.org/10.7164/antibiotics.29.1346] [PMID: 1010803]
[38]
Endo, A.; Kuroda, M. Citrinin, an inhibitor of cholesterol synthesis. J. Antibiot. (Tokyo), 1976, 29(8), 841-843.
[http://dx.doi.org/10.7164/antibiotics.29.841] [PMID: 791911]
[39]
Hajar, R. Statins: past and present. Heart Views, 2011, 12(3), 121-127.
[http://dx.doi.org/10.4103/1995-705X.95070] [PMID: 22567201]
[40]
Endo, A. A historical perspective on the discovery of statins. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(5), 484-493.
[http://dx.doi.org/10.2183/pjab.86.484] [PMID: 20467214]
[41]
Singer, I.I.; Scott, S.; Kazazis, D.M.; Huff, J.W. Lovastatin, an inhibitor of cholesterol synthesis, induces hydroxymethylglutaryl-coenzyme A reductase directly on membranes of expanded smooth endoplasmic reticulum in rat hepatocytes. Proc. Natl. Acad. Sci. USA, 1988, 85(14), 5264-5268.
[http://dx.doi.org/10.1073/pnas.85.14.5264] [PMID: 3293052]
[42]
Goswami, S.; Vidyarthi, A.S.; Bhunia, B.; Mandal, T. A review on lovastatin and its production. J. Biochem. Technol., 2012, 4, 581-587.
[43]
Tobert, J.A. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov., 2003, 2(7), 517-526.
[http://dx.doi.org/10.1038/nrd1112] [PMID: 12815379]
[44]
Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; Patchett, A.; Monaghan, R.; Currie, S.; Stapley, E.; Albers-Schonberg, G.; Hensens, O.; Hirshfield, J.; Hoogsteen, K.; Liesch, J.; Springer, J. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA, 1980, 77(7), 3957-3961.
[http://dx.doi.org/10.1073/pnas.77.7.3957] [PMID: 6933445]
[45]
Endo, A.; Monacolin, K. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. (Tokyo), 1979, 32(8), 852-854.
[http://dx.doi.org/10.7164/antibiotics.32.852] [PMID: 500505]
[46]
Endo, A. The origin of the statins. 2004. Atheroscler. Suppl., 2004, 5(3), 125-130.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2004.08.033] [PMID: 15531285]
[47]
Xie, X.; Watanabe, K.; Wojcicki, W.A.; Wang, C.C.; Tang, Y. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem. Biol., 2006, 13(11), 1161-1169.
[http://dx.doi.org/10.1016/j.chembiol.2006.09.008] [PMID: 17113998]
[48]
Xie, X.; Tang, Y. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl. Environ. Microbiol., 2007, 73(7), 2054-2060.
[http://dx.doi.org/10.1128/AEM.02820-06] [PMID: 17277201]
[49]
García, M.J.; Reinoso, R.F.; Sánchez Navarro, A.; Prous, J.R. Clinical pharmacokinetics of statins. Methods Find. Exp. Clin. Pharmacol., 2003, 25(6), 457-481.
[http://dx.doi.org/10.1358/mf.2003.25.6.769652] [PMID: 12949632]
[50]
Fujino, H.; Saito, T.; Tsunenari, Y.; Kojima, J.; Sakaeda, T. Metabolic properties of the acid and lactone forms of HMG-CoA reductase inhibitors. Xenobiotica, 2004, 34(11-12), 961-971.
[http://dx.doi.org/10.1080/00498250400015319] [PMID: 15801541]
[51]
Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam. Clin. Pharmacol., 2005, 19(1), 117-125.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00299.x] [PMID: 15660968]
[52]
Son, M.; Baek, A.; Sakkiah, S.; Park, C.; John, S.; Lee, K.W. Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. PLoS One, 2013, 8(12)e83496
[http://dx.doi.org/10.1371/journal.pone.0083496] [PMID: 24386216]
[53]
Perchellet, J.P.; Perchellet, E.M.; Crow, K.R.; Buszek, K.R.; Brown, N.; Ellappan, S.; Gao, G.; Luo, D.; Minatoya, M.; Lushington, G.H. Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins. Int. J. Mol. Med., 2009, 24(5), 633-643.
[http://dx.doi.org/10.3892/ijmm_00000274] [PMID: 19787197]
[54]
Wierzbicki, A.S. Synthetic statins: more data on newer lipid-lowering agents. Curr. Med. Res. Opin., 2001, 17(1), 74-77.
[http://dx.doi.org/10.1185/03007990152005388] [PMID: 11464449]
[55]
Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov., 2008, 7(3), 255-270.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[56]
Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 2001, 292(5519), 1160-1164.
[http://dx.doi.org/10.1126/science.1059344] [PMID: 11349148]
[57]
Slater, E.E.; MacDonald, J.S. Mechanism of action and biological profile of HMG CoA reductase inhibitors. A new therapeutic alternative. Drugs, 1988, 36(Suppl. 3), 72-82.
[http://dx.doi.org/10.2165/00003495-198800363-00016] [PMID: 3076125]
[58]
Roche, V.F. Antihyperlipidemic statins: A self-contained, clinically relevant medicinal chemistry lesson. Am. J. Pharm. Educ., 2005, 69, 546-560.
[http://dx.doi.org/10.5688/aj690477]
[59]
Istvan, E.S.; Palnitkar, M.; Buchanan, S.K.; Deisenhofer, J. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J., 2000, 19(5), 819-830.
[http://dx.doi.org/10.1093/emboj/19.5.819] [PMID: 10698924]
[60]
Haines, B.E.; Wiest, O.; Stauffacher, C.V. The increasingly complex mechanism of HMG-CoA reductase. Acc. Chem. Res., 2013, 46(11), 2416-2426.
[http://dx.doi.org/10.1021/ar3003267] [PMID: 23898905]
[61]
Lin, S.H.; Huang, K.J.; Weng, C.F.; Shiuan, D. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Des. Devel. Ther., 2015, 9, 3313-3324.
[PMID: 26170618]
[62]
Erkelens, D.W. Combination drug therapy with HMG CoA reductase inhibitors and bile acid sequestrants for hypercholesterolemia. Cardiology, 1990, 77(Suppl. 4), 33-38.
[http://dx.doi.org/10.1159/000174681] [PMID: 2073670]
[63]
Reinhart, K.M.; Talati, R.; White, C.M.; Coleman, C.I. The impact of garlic on lipid parameters: a systematic review and meta-analysis. Nutr. Res. Rev., 2009, 22(1), 39-48.
[http://dx.doi.org/10.1017/S0954422409350003] [PMID: 19555517]
[64]
Gebhardt, R. Inhibition of cholesterol biosynthesis by a water-soluble garlic extract in primary cultures of rat hepatocytes. Arzneimittelforschung, 1991, 41(8), 800-804.
[PMID: 1781801]
[65]
Gebhardt, R.; Beck, H.; Wagner, K.G. Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and HepG2 cells. Biochim. Biophys. Acta, 1994, 1213(1), 57-62.
[http://dx.doi.org/10.1016/0005-2760(94)90222-4] [PMID: 8011681]
[66]
Rai, S.K.; Sharma, M.; Tiwari, M. Inhibitory effect of novel diallyldisulfide analogs on HMG-CoA reductase expression in hypercholesterolemic rats: CREB as a potential upstream target. Life Sci., 2009, 85(5-6), 211-219.
[http://dx.doi.org/10.1016/j.lfs.2009.05.020] [PMID: 19523964]
[67]
Kramer, W.; Wess, G.; Enhsen, A.; Bock, K.; Falk, E.; Hoffmann, A.; Neckermann, G.; Gantz, D.; Schulz, S.; Nickau, L. Bile acid derived HMG-CoA reductase inhibitors. Biochim. Biophys. Acta, 1994, 1227(3), 137-154.
[http://dx.doi.org/10.1016/0925-4439(94)90088-4] [PMID: 7986821]
[68]
Tuansulong, K.A.; Hutadilok-Towatana, N.; Mahabusarakam, W.; Pinkaew, D.; Fujise, K. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytother. Res., 2011, 25(3), 424-428.
[PMID: 20734327]
[69]
Hutadilok-Towatana, N.; Kongkachuay, S.; Mahabusarakam, W. Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis. Nat. Prod. Res., 2007, 21(7), 655-662.
[http://dx.doi.org/10.1080/14786410701371256] [PMID: 17613824]
[70]
Leopoldini, M.; Malaj, N.; Toscano, M.; Sindona, G.; Russo, N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. J. Agric. Food Chem., 2010, 58(19), 10768-10773.
[http://dx.doi.org/10.1021/jf102576j] [PMID: 20843083]
[71]
Colle, S.; Taillefumier, C.; Chapleur, Y.; Liebl, R.; Schmidt, A. Synthesis and biological testings as inhibitors of HMGCoA reductase of the seco-acid of tuckolide and its C-7 epimer. Bioorg. Med. Chem., 1999, 7(6), 1049-1057.
[http://dx.doi.org/10.1016/S0968-0896(99)00020-6] [PMID: 10428373]
[72]
Moreno, F.S.; Rossiello, M.R.; Manjeshwar, S.; Nath, R.; Rao, P.M.; Rajalakshmi, S.; Sarma, D.S. Effect of beta-carotene on the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat liver. Cancer Lett., 1995, 96(2), 201-208.
[http://dx.doi.org/10.1016/0304-3835(95)03933-N] [PMID: 7585458]
[73]
Shen, C.; Huang, L.; Xiang, H.; Deng, M.; Gao, H.; Zhu, Z.; Liu, M.; Luo, G. Inhibitory effects on the HMG-CoA Reductase in the chemical constituents of the Cassia mimosoides Linn. Rom. J. Lab. Med., 2016, 24, 413-422.
[http://dx.doi.org/10.1515/rrlm-2016-0041]
[74]
Alvi, S.S.; Iqbal, D.; Ahmad, S.; Khan, M.S. Molecular rationale delineating the role of lycopene as a potent HMG-CoA reductase inhibitor: in vitro and in silico study. Nat. Prod. Res., 2016, 30(18), 2111-2114.
[http://dx.doi.org/10.1080/14786419.2015.1108977] [PMID: 26548547]
[75]
Palozza, P.; Simone, R.; Catalano, A.; Parrone, N.; Monego, G.; Ranelletti, F.O. Lycopene regulation of cholesterol synthesis and efflux in human macrophages. J. Nutr. Biochem., 2011, 22(10), 971-978.
[http://dx.doi.org/10.1016/j.jnutbio.2010.08.010] [PMID: 21208793]
[76]
Correll, C.C.; Ng, L.; Edwards, P.A. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem., 1994, 269(26), 17390-17393.
[PMID: 8021239]
[77]
Ong, T.P.; Heidor, R.; de Conti, A.; Dagli, M.L.; Moreno, F.S. Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis, 2006, 27(6), 1194-1203.
[http://dx.doi.org/10.1093/carcin/bgi291] [PMID: 16332721]
[78]
Crespo, R.; Montero Villegas, S.; Abba, M.C.; de Bravo, M.G.; Polo, M.P. Transcriptional and posttranscriptional inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2 cell proliferation linked pathways. Biochem. Cell Biol., 2013, 91(3), 131-139.
[http://dx.doi.org/10.1139/bcb-2012-0076] [PMID: 23668785]
[79]
Das, U.N. Essential fatty acids as possible mediators of the actions of statins. Prostaglandins Leukot. Essent. Fatty Acids, 2001, 65(1), 37-40.
[http://dx.doi.org/10.1054/plef.2001.0285] [PMID: 11487306]
[80]
Notarnicola, M.; Messa, C.; Refolo, M.G.; Tutino, V.; Miccolis, A.; Caruso, M.G. Synergic effect of eicosapentaenoic acid and lovastatin on gene expression of HMGCoA reductase and LDL receptor in cultured HepG2 cells. Lipids Health Dis., 2010, 9, 135.
[http://dx.doi.org/10.1186/1476-511X-9-135] [PMID: 21118482]
[81]
Popławski, J.; Lozowicka, B.; Dubis, A.T.; Lachowska, B.; Witkowski, S.; Siluk, D.; Petrusewicz, J.; Kaliszan, R.; Cybulski, J.; Strzałkowska, M.; Chilmonczyk, Z. Synthesis and hypolipidemic and antiplatelet activities of α-asarone isomers in humans (in vitro), mice (in vivo), and rats (in vivo). J. Med. Chem., 2000, 43(20), 3671-3676.
[http://dx.doi.org/10.1021/jm000905n] [PMID: 11020281]
[82]
Antunez-Solis, J.; Hernández-Derramadero, F.; Aquino-Vega, M.; Ibarra-Ramírez, S.; Rodríguez-Páez, L.; Baeza, I.; Wong, C. 2,4,5-trimethoxycinnamic acid: the major metabolite of α-asarone, retains most of the pharmacological properties of α-asarone. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 903-909.
[http://dx.doi.org/10.1080/14756360802318902] [PMID: 18686138]
[83]
Rodríguez-Páez, L.; Juárez-Sanchez, M.; Antúnez-Solís, J.; Baeza, I.; Wong, C. Alpha-asarone inhibits HMG-CoA reductase, lowers serum LDL-cholesterol levels and reduces biliary CSI in hypercholesterolemic rats. Phytomedicine, 2003, 10(5), 397-404.
[http://dx.doi.org/10.1078/0944-7113-00274] [PMID: 12834005]
[84]
Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Two peptides from soy β-conglycinin induce a hypocholesterolemic effect in HepG2 Cells by a statin-like mechanism: Comparative in vitro and in silico modeling studies. J. Agric. Food Chem., 2015, 63(36), 7945-7951.
[http://dx.doi.org/10.1021/acs.jafc.5b03497] [PMID: 26310992]
[85]
Li, H.; Li, H.; Ziegler, N.; Cui, R.; Liu, J. Recent patents on PCSK9: a new target for treating hypercholesterolemia. Recent Pat. DNA Gene Seq., 2009, 3(3), 201-212.
[http://dx.doi.org/10.2174/187221509789318388] [PMID: 19601924]
[86]
Varghese, M.J. Familial hypercholesterolemia: A review. Ann. Pediatr. Cardiol., 2014, 7(2), 107-117.
[http://dx.doi.org/10.4103/0974-2069.132478] [PMID: 24987256]
[87]
Brea Hernando, Á.J. [Therapeutic targets in the treatment of dyslipidemia: HDL and non-HDL cholesterol Clin. Investig. Arterioscler., 2014, 26(Suppl. 1), 3-6.
[PMID: 25043539]
[88]
Stein, E.A.; Marais, A.D.; Szamosi, T.; Raal, F.J.; Schurr, D.; Urbina, E.M.; Hopkins, P.N.; Karki, S.; Xu, J.; Misir, S.; Melino, M. Colesevelam hydrochloride: efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J. Pediatr., 2010. 156(2), 231-6.e1, 3.
[http://dx.doi.org/10.1016/j.jpeds.2009.08.037] [PMID: 19879596]
[89]
Altmann, S.W.; Davis, H.R., Jr; Zhu, L.J.; Yao, X.; Hoos, L.M.; Tetzloff, G.; Iyer, S.P.; Maguire, M.; Golovko, A.; Zeng, M.; Wang, L.; Murgolo, N.; Graziano, M.P.; Niemann, P.C. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science, 2004, 303(5661), 1201-1204.
[http://dx.doi.org/10.1126/science.1093131] [PMID: 14976318]
[90]
Moutzouri, E.; Kei, A.; Elisaf, M.S.; Milionis, H.J. Management of dyslipidemias with fibrates, alone and in combination with statins: Role of delayed-release fenofibric acid. Vasc. Health Risk Manag., 2010, 6, 525-539.
[PMID: 20730069]
[91]
Gudzune, K.A.; Monroe, A.K.; Sharma, R.; Ranasinghe, P.D.; Chelladurai, Y.; Robinson, K.A. Effectiveness of combination therapy with statin and another lipid-modifying agent compared with intensified statin monotherapy: a systematic review. Ann. Intern. Med., 2014, 160(7), 468-476.
[http://dx.doi.org/10.7326/M13-2526] [PMID: 24514899]
[92]
Fiévet, C.; Staels, B. Combination therapy of statins and fibrates in the management of cardiovascular risk. Curr. Opin. Lipidol., 2009, 20(6), 505-511.
[http://dx.doi.org/10.1097/MOL.0b013e328332e9ef] [PMID: 19829109]
[93]
Nußbaumer, B.; Glechner, A.; Kaminski-Hartenthaler, A.; Mahlknecht, P.; Gartlehner, G. Ezetimibe-statin combination therapy. Dtsch. Arztebl. Int., 2016, 113(26), 445-453.
[PMID: 27412989]
[94]
DuBroff, R.; de Lorgeril, M. Cholesterol confusion and statin controversy. World J. Cardiol., 2015, 7(7), 404-409.
[http://dx.doi.org/10.4330/wjc.v7.i7.404] [PMID: 26225201]
[95]
Singh, S.; Loke, Y.K. Statins and pancreatitis: a systematic review of observational studies and spontaneous case reports. Drug Saf., 2006, 29(12), 1123-1132.
[http://dx.doi.org/10.2165/00002018-200629120-00004] [PMID: 17147459]
[96]
Maji, D.; Shaikh, S.; Solanki, D.; Gaurav, K. Safety of statins. Indian J. Endocrinol. Metab., 2013, 17(4), 636-646.
[http://dx.doi.org/10.4103/2230-8210.113754] [PMID: 23961479]
[97]
Khera, A.V.; Rader, D.J. Discovery and validation of new molecular targets in treating dyslipidemia: the role of human genetics. Trends Cardiovasc. Med., 2009, 19(6), 195-201.
[http://dx.doi.org/10.1016/j.tcm.2009.12.003] [PMID: 20211435]
[98]
Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam. Clin. Pharmacol., 2005, 19(1), 117-125.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00299.x] [PMID: 15660968]

© 2024 Bentham Science Publishers | Privacy Policy