[3]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha-Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander-Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Can Biol., 2015, 35, S276-S304.
[4]
Röckmann, H.; Schadendorf, D. Drug resistance in human melanoma: Mechanisms and therapeutic opportunities. Onkologie, 2003, 26, 581-587.
[5]
Soengas, M.S.; Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22(20), 3138-3151.
[6]
Sookraj, K.A.; Adler, V.; Sarafraz-Yazdi, E.; Bowne, W.B. W1961 Novel p53-derived peptide induces extensive necrosis in cancer cells. Gastroenterology, 2008, 134(4), 7743.
[7]
Fulda, S.; Wick, W.; Weller, M.; Debatin, K.M. Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induced regression of malignant glioma in vivo. Nat. Med., 2002, 8(8), 808-815.
[8]
Polonelli, L.; Pontón, J.; Elguezabal, N.; Moragues, M.D.; Casoli, C.; Pilotti, E.; Ronzi, P.; Dobroff, A.S.; Rodrigues, E.G.; Juliano, M.A.; Maffei, D. L Antibody Complementarity-Determining Regions (CDRs) can display differential antimicrobial, antiviral and antitumor activities. PLoS One, 2008, 3(6), 2371.
[9]
Arruda, D.C.; Santos, L.C.P.; Melo, F.M.; Pereira, F.V.; Figueiredo, C.R.; Matsuo, A.L.; Mortara, R.A.; Juliano, M.A.; Rodrigues, E.G.; Dobroff, A.S.; Polonelli, L.; Travassos, L.R. β-Actin-binding complementarity-determining region 2 of variable heavy chain from monoclonal antibody C7 induces apoptosis in several human tumor cells and is protective against metastatic melanoma. J. Biol. Chem., 2012, 287(18), 14912-14922.
[10]
Maijaroen, S.; Jangpromma, N.; Daduang, J.; Klaynongsruang, S. KT2 and RT2 modified antimicrobial peptides derived from Crocodylus siamensis Leucrocin I show activity against human colon cancer HCT-116 cells. Environ. Toxicol. Pharmacol., 2018, 62, 164-176.
[11]
Feng, Z.; Wang, H.; Du, X.; Shi, J.; Li, J.; Xu, B. Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells. Chem. Commun. (Camb.), 2016, 52(37), 6332-6335.
[12]
Krause, G.C.; Lima, K.G.; Dias, H.B.; Da-Silva, E.F.G.; Haute, G.V.; Basso, B.S.; Gassen, R.B.; Marczak, E.S.; Nunes, R.S.B.; De-Oliveira, J.R. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells. Eur. J. Pharmacol., 2017, 15(809), 32-41.
[13]
Rabaça, A.N.; Arruda, D.C.; Figueiredo, C.R.; Massaoka, M.H.; Farias, C.F.; Tada, D.B.; Maia, V.C.; Silva, Jr, P.I.; Girola, N.; Real, F.; Mortara, R.A.; Polonelli, L.; Travassos, L.R. AC-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio, 2016, 6(9), 885-901.
[14]
Cook, A.L.; Sturm, R.A. POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis. Pigm Cell Melanoma Res., 2008, 21(6), 611-626.
[15]
Goodall, J.; Wellbrock, C.; Dexter, T.J.; Roberts, K.; Marais, R.; Goding, C.R. The BRN2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell. Biol., 2004, 24, 2923-2931.
[16]
Wellbrock, C.; Rana, S.; Paterson, H.; Pickersgill, H.; Brummelkamp, T.; Marais, R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One, 2008, 163(7), e2734 15..
[17]
Fane, M.E.; Chhabra, Y.; Smith, A.G.; Sturm, R.A. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res., 2019, 32, 9-24.
[18]
Goodall, J.; Carreira, S.; Denat, L.; Kobi, D.; Davidson, I.; Nuciforo, P.; Sturm, R.; Larue, L.; Goding, C.R. BRN2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res., 2008, 68(19), 7788-7794.
[19]
Bonvin, E.; Falletta, P.; Shaw, H.; Delmas, V.; Goding, C.R. A phosphatidylinositol 3-kinase-Pax3 axis regulates BRN2 expression in melanoma. Mol. Cell. Biol., 2012, 32(22), 4674-4683.
[20]
Dobroff, A.S.; Rodrigues, E.G.; Moraes, J.Z.; Travassos, L.R. Protective anti-tumor monoclonal antibody recognizes a conformational epitope similar to melibiose at the surface of invasive murine melanoma cells. Hybrid. Hybridomics, 2002, 21, 321-331.
[21]
Miguel, D.C.; Flannery, A.R.; Mittra, B.; Andrews, N.W. Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence. Infect. Immun., 2013, 81(10), 3620-3626.
[22]
Oddo, A.; Hansen, P.R. Hemolytic activity of antimicrobial peptides. Methods Mol. Bio., 2017, 1548, 427-435.
[23]
Atkinson, E.A.; Barry, M.; Darmon, A.J.; Shostak, I.; Turner, P.C.; Moyer, R.W.; Bleackley, R.C. Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of the direct action of granzyme B. J. Biol. Chem., 1998, 273(33), 21261-21266.
[24]
Dong, T.; Liao, D.; Liu, X.; Lei, X. Using small molecules to dissect non-apoptotic programmed cell death: Necroptosis, ferroptosis, and pyroptosis. Chembiochem, 2015, 16(18), 2557-2561.
[25]
Figueiredo, C.R.; Matsuo, A.L.; Pereira, F.V.; Rabaça, A.N.; Farias, C.F.; Girola, N.; Massaoka, M.H.; Azevedo, R.A.; Scutti, J.A.; Arruda, D.C.; Silva, L.P.; Rodrigues, E.G.; Lago, J.H.; Travassos, L.R.; Silva, R.M. Pyrostegia venusta heptane extract containing saturated aliphatic hydrocarbons inducesapoptosis on B16F10-Nex2 melanoma cells and displays antitumor activity in vivo. Pharmacogn. Mag., 2014, 10(Suppl. 2), S363-S376.
[26]
Negoescu, A.; Guillermet, C.; Lorimier, P.; Brambilla, E.; Labat-Moleur, F. Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity. Biomed. Pharmacother., 1998, 52(6), 252-258.
[27]
Amin, H.M.; Medeiros, L.J.; Ma, Y.; Feretzaki, M.; Das, P.; Leventaki, V.; Rassidakis, G.Z.; O’Connor, S.L.; McDonnell, T.J.; Lai, R. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene, 2003, 22(35), 5399-5407.
[28]
Kuypers, F.A.; Lewis, R.A.; Hua, M.; Schott, M.A.; Discher, D.; Ernst, J.D.; Lubin, B.H. Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood, 1996, 87(3), 1179-1187.
[29]
Thornberry, N.A.; Lazebnik, Y. Caspases: Enemies within. Science, 1998, 281(5381), 1312-1316.
[30]
Sinthujaroen, P.; Wanachottrakul, N.; Pinkaew, D.; Petersen, J.R.; Phongdara, A.; Sheffield-Moore, M.; Fujise, K. Elevation of serum fortilin levels is specific for apoptosis and signifies cell death in vivo. BBA Clin., 2014, 2, 103-111.
[31]
Chan, F.K.; Moriwaki, K.; De-Rosa, M.J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol., 2013, 979, 65-70.
[32]
Girola, N.; Matsuo, A.L.; Figueiredo, C.R.; Massaoka, M.H.; Farias, C.F.; Arruda, D.C.; Azevedo, R.A.; Monteiro, H.P.; Resende-Lara, P.T.; Cunha, R.L.; Polonelli, L.; Travassos, L.R. The Ig VH complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides, 2016, 85, 1-15.
[33]
Massaoka, M.H.; Matsuo, A.L.; Figueiredo, C.R.; Girola, N.; Faria, C.F.; Azevedo, R.A.; Travassos, L.R. A novel cell-penetrating peptide derived from WT1 enhances p53 activity, induces cell senescence and displays antimelanoma activity in xeno- and syngeneic systems. FEBS Open Bio, 2014, 21(4), 153-161.
[34]
Wang, X.; Qiao, Y.; Asangani, I.A.; Ateeq, B.; Poliakov, A.; Cieślik, M.; Pitchiaya, S.; Chakravarthi, B.V.; Cao, X.; Jing, X.; Wang, C.X.; Apel, I.J.; Wang, R.; Tien, J.C.; Juckette, K.M.; Yan, W.; Jiang, H.; Wang, S.; Varambally, S.; Chinnaiyan, A.M. Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Canc Cell, 2017, 31(4), 532-548.
[35]
Peixoto, P.; Liu, Y.; Depauw, S.; Hildebrand, M.P.; Boykin, D.W.; Bailly, C.; Wilson, W.D.; David-Cordonnier, M.H. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furanbenzimidazole dication. Nucleic Acids Res., 2008, 36, 3341-3353.
[36]
Pathria, G.; Ronai, Z.A. BRN 2 Invade. Cancer Cell, 2018, 34(1), 1-3.
[37]
Renz, A.; Berdel, W.E.; Kreuter, M.; Belka, C.; Schulze-Osthoff, K.; Los, M. Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood, 2001, 98, 1542-1548.
[38]
Gobe, G.; Crane, D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol. Lett., 2010, 198(1), 49-55.
[39]
Luetjens, C.M.; Kögel, D.; Reimertz, C.; Düßmann, H.; Renz, A.; Schulze-Osthoff, K.; Nieminen, A.L.; Poppe, M.; Prehn, J.H. Multiple kinetics of mitochondrial cytochrome c release in drug-induced apoptosis. Mol. Pharmacol., 2001, 60, 1008-1019.
[40]
Paradies, G.; Petrosillo, G.; Pistolese, M.; Ruggiero, F.M. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene, 2002, 286, 135-141.
[41]
Vakifahmetoglu-Norberg, H.; Ouchida, A.T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 426-431.
[42]
Masse, M.; Glippa, V.; Saad, H.; Le Bloas, R.; Gauffeny, I.; Berthou, C.; Czjzek, M.; Cormier, P.; Cosson, B. An eIF4E-interacting peptide induces cell death in cancer cell lines. Cell Death Dis., 2014, 5(10)e1500
[43]
Franz, S.; Frey, B.; Sheriff, A.; Gaipl, U.S.; Beer, A.; Voll, R.E.; Kalden, J.R.; Herrmann, M. Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry A, 2006, 69, 230-239.
[44]
Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; Wang, X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 2012, 148(1-2), 213-227.
[45]
Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; Wang, X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell, 2014, 148(1), 213-227.
[46]
Asaro, R.J.; Zhu, Q.; Cabrales, P.; Carruthers, A. Do skeletal dynamics mediate sugar uptake and transport in human erythrocytes? Biophys. J., 2018, 114(6), 1440-1454.
[47]
Shamloo, A.; Mehrafrooz, B. Nanomechanics of actin filament: A molecular dynamics simulation. Cytoskeleton, 2018, 75(3), 118-130.
[48]
He, L.; Sayers, E.J.; Watson, P.; Jones, A.T. Contrasting roles for actin in the cellular uptake of cell penetrating peptide conjugates. Sci. Rep., 2018, 8(1), 7318.