Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Recent Advances in the Development of Polymeric Nanocarrier Formulations for the Treatment of Colon Cancer

Author(s): Sahil Kumar, Bandna Sharma, Kiran Thakur, Tilak R. Bhardwaj, Deo N. Prasad and Rajesh K. Singh*

Volume 9, Issue 1, 2019

Page: [2 - 14] Pages: 13

DOI: 10.2174/2210303108666181109120710

Price: $65

Abstract

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells.

Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc.

Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.

Keywords: Colon cancer, nanoparticles, nanocarriers, site-specific, polymers, anticancer drugs, cytotoxicity.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: source, methods and major patters in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[2]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[3]
Somasundaram, S.N.; Shanmugam, S.; Subramanian, B.; Jaganathan, R. Cytotoxic effect of fucoidan extracted from Sargassum cinereum on colon cancer cell line HCT-15. Int. J. Biol. Macromol., 2016, 91, 1215-1223.
[4]
Liang, T.J.; Zhou, Z.M.; Cao, Y.Q.; Ma, M.Z.; Wang, X.J.; Jing, K. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer. Int. J. Pharm., 2016, 513, 564-571.
[5]
Labianca, R.; Nordlinger, B.; Beretta, G.D.; Brouquet, A.; Cervantes, A. Primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up. Ann. Oncol., 2010, 21, 70-77.
[6]
Xie, X.; Li, F.; Zhang, H.; Lu, Y.; Lian, S.; Lin, H.; Gao, Y.; Jia, L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur. J. Pharm. Sci., 2016, 83, 28-35.
[7]
Escalona, M.M.D.; Fernández, E.S.; Prados, J.C.; Melguizo, C.; Arias, J.L. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. Int. J. Pharm., 2016, 504, 11-19.
[8]
Kulbacka, J.; Pucek, A.; Kotulska, M.; Magiera, M.D.; Rossowska, J.; Rols, M.P.; Wilk, K.A. Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer. Bioelectrochemistry, 2016, 110, 19-31.
[9]
Sundaramoorthy, P.; Ramasamy, T.; Mishra, S.K.; Jeong, K.Y.; Yong, C.S.; Kim, J.O.; Kim, H.M. Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomater., 2016, 42, 220-231.
[10]
Tummala, S.; Kumar, M.N.S.; Prakash, A. Formulation and characterization of 5-fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J., 2015, 23, 308-314.
[11]
Singh, S.K.; Sharma, M.; Gupta, P.K. Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells. Int. J. Biol. Macromol., 2015, 74, 162-170.
[12]
Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. Int. J. Biol. Macromol., 2011, 48, 381-385.
[13]
Augustin, E.; Czubek, B.; Nowicka, A.M.; Kowalczyk, A.; Stojek, Z.; Mazerska, Z. Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol. In Vitro, 2016, 33, 45-53.
[14]
Akl, M.A.; Hodzic, A.K.; Oksanen, T.; Ismael, H.R.; Afouna, M.M.; Yliperttula, M.; Samy, A.M.; Viitala, T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol., 2016, 32, 10-20.
[15]
Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth inhibitory effect on human colon cancer cell line HCT15. Process Biochem., 2013, 48, 317-324.
[16]
Li, X.; Tang, T.; Zhou, Y.; Zhang, Y.; Sun, Y. Applicability of enzyme-responsive mesoporous silica supports capped with bridged silsesquioxane for colon-specific drug delivery. Microporous Mesoporous Mater., 2014, 184, 83-89.
[17]
Cohen, S.; Pellach, M.; Kam, Y.; Grinberg, I.; Salkmon, E.C.; Rubinstein, A.; Margel, S. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer. Mater. Sci. Eng. C, 2013, 33, 923-931.
[18]
Abruzzo, A.; Zuccheri, G.; Belluti, F.; Provenzano, S.; Verardi, L.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Calonghi, N. Chitosan nanoparticles for lipophilic anticancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Colloids Surf. B Biointerfaces, 2016, 145, 362-372.
[19]
Potara, M.; Bawaskar, M.; Simon, T.; Gaikwad, S.; Licarete, E.; Ingle, A.; Banciu, M.; Vulpoi, A.; Astilean, S.; Rai, M. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids Surf. B Biointerfaces, 2015, 133, 296-303.
[20]
Thu, H.P.; Nam, N.H.; Quang, B.T.; Son, H.A.; Toan, N.L.; Quang, D.T. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA–TPGS nanoparticles. Saudi Pharm. J., 2015, 23, 683-688.
[21]
Vong, L.B.; Yoshitomi, T.; Matsui, H.; Nagasaki, Y. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials, 2015, 55, 54-63.
[22]
Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; Merlin, D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016, 101, 321-340.
[23]
Li, P.; Wang, Y.; Peng, Z.; She, F.; Kong, L. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydr. Polym., 2011, 85, 698-704.
[24]
Anitha, A.; Sreeranganathan, M.; Chennazhi, K.P.; Lakshmanan, V.K.; Jayakumar, R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur. J. Pharm. Biopharm., 2014, 88, 238-251.
[25]
Dinarvand, M.; Kiani, M.; Mirzazadeh, F.; Esmaeili, A.; Mirzaie, Z.; Soleimani, M.; Dinarvand, R.; Atyabi, F. Oral delivery of nanoparticles containing anticancer SN38 and hSET1 antisense for dual therapy of colon cancer. Int. J. Biol. Macromol., 2015, 78, 112-121.
[26]
Dinarvand, M.; Kiani, M.; Mirzazadeh, F.; Esmaeili, A.; Mirzaie, Z.; Soleimani, M.; Dinarvand, R.; Atyabi, F. Oral delivery of nanoparticles containing anticancer SN38 and hSET1 antisense for dual therapy of colon cancer. Int. J. Biol. Macromol., 2015, 78, 112-121.
[27]
Low, K.; Biol, D.; Wacker, M.; Wagner, S.; Langer, K.; Briesen, H.V. Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine, 2011, 7, 454-463.
[28]
Choi, K.Y.; Jeon, E.J.; Yoon, H.Y.; Lee, B.S.; Na, J.H.; Min, K.H.; Kim, S.Y.; Myung, S.J.; Lee, S.; Chen, X.; Kwon, I.C.; Choi, K.; Jeong, S.Y.; Kim, K.; Park, J.H. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials, 2012, 33, 6186-6193.
[29]
Wang, C.; Ho, P.C.; Lim, L.Y. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int. J. Pharm., 2010, 400, 201-210.
[30]
Gamboa, A.; Araujo, V.; Caro, N.; Gotteland, M.; Abugoch, L.; Tapia, C. Spray freeze-drying as an alternative to the ionic gelation method to produce chitosan and alginate nano-particles targeted to the colon. J. Pharm. Sci., 2015, 104, 4373-4385.
[31]
Kundu, D.; Hazra, C.; Chaudhari, A.; Mishra, S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B, 2014, 140, 194-204.
[32]
Bayat, A.; Dorkoosh, F.A.; Dehpour, A.R.; Moezi, L.; Larijani, B.; Junginger, H.E.; Tehrani, M.R. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies. Int. J. Pharm., 2008, 356, 259-266.
[33]
Viota, J.L.; Carazo, A.; Gamez, J.A.M.; Rudzka, K.; Sotomayor, R.G.; Extremera, A.R.; Salmerón, J.; Delgado, A.V. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells: physicochemical in vitro evaluation. Mater. Sci. Eng. C, 2013, 33, 1183-1192.
[34]
Jain, A.; Jain, S.K.; Ganesh, N.; Barve, J.; Beg, A.M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine, 2010, 6, 179-190.
[35]
Sengel-Turk, C.T.; Hasçiçek, C.; Dogan, A.L.; Esendagli, G.; Guc, D.; Gonul, N. Preparation and in vitro evaluation of meloxicam-loaded PLGA nanoparticles on HT-29 human colon adenocarcinoma cells. Drug Dev. Ind. Pharm., 2012, 38, 1107-1116.
[36]
Xiao, B.; Han, M.K.; Viennois, E.; Wang, L.; Zhang, M.; Si, X.; Merlin, D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale, 2015, 7, 17745-17755.
[37]
Cho, Y.S.; Yoon, T.J.; Jang, E.S.; Hong, K.S.; Lee, S.Y.; Kim, O.R.; Kim, Y.J.; Yi, G.C.; Chang, K. Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Lett., 2010, 299, 63-71.
[38]
Anitha, A.; Deepa, N.; Chennazhi, K.P.; Lakshmanan, V.K.; Jayakumar, R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim. Biophys. Acta, 2014, 1840, 2730-2743.
[39]
Zhang, M.; Xu, C.; Wen, L.; Han, M.K.; Xiao, B.; Zhou, J.; Zhang, Y.; Zhang, Z.; Viennois, E.; Merlin, D. A hyaluronidase responsive nanoparticle-based drug delivery system for targeting colon cancer cells. Cancer Res., 2016, 76(24), 7208-7218.
[40]
Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol., 2009, 5, 445-455.
[41]
Sharma, M.; Malik, R.; Verma, A.; Dwivedi, P.; Banoth, G.S.; Pandey, V.; Sarkar, J.; Mishra, P.R.; Dwivedi, A.K. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J. Biomed. Nanotechnol., 2013, 9, 96-106.
[42]
El-Hammadi, M.M.; Delgado, A.V.; Melguizo, C.; Prados, J.C.; Arias, J.L. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int. J. Pharm., 2017, 516, 61-70.
[43]
Negi, L.M.; Jaggi, M.; Joshi, V.; Ronodip, K.; Talegaonkar, S. Hyaluronic acid decorated lipid nanocarrier for MDR modulation and CD-44 targeting in colon adenocarcinoma. Int. J. Biol. Macromol., 2015, 72, 569-574.
[44]
Liu, K.; Wang, Z.Q.; Wang, S.J.; Liu, P.; Qin, Y.H.; Ma, Y.; Li, X.C.; Huo, Z.J. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: Therapeutic efficacy evaluation. Int. J. Nanomedicine, 2015, 10, 6445-6454.
[45]
Kumar, B.; Kulanthaivel, S.; Mondal, A.; Mishra, S.; Banerjee, B.; Bhaumik, A.; Banerjee, I.; Giri, S. Mesoporous silica nanoparticle based enzyme responsive system for colon-specific drug delivery through guar gum capping. Colloids Surf. B Biointerfaces, 2016, 150, 352-361.
[46]
Azhdarzadeh, M.; Atyabi, F.; Saei, A.A.; Varnamkhasti, B.S.; Omidi, Y.; Fateh, M.; Ghavami, M.; Shanehsazzadeh, S. Dinarvand. R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf. B Biointerfaces, 2016, 143, 224-232.
[47]
Hong, G.Y.; Jeong, Y.I.; Lee, S.J.; Lee, E.; Oh, J.S.; Lee, H.C. Combination of paclitaxel-and retinoic acid-incorporated nanoparticles for the treatment of CT-26 colon carcinoma. Arch. Pharm. Res., 2011, 34, 407-417.
[48]
Ozturk, K.; Mashal, A.R.; Yegin, B.A.; Çalış, S. Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm. Dev. Technol., 2015, 29, 1-7.
[49]
Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J. Microencapsul., 2015, 32, 40-45.
[50]
Park, J.S.; Koh, Y.S.; Bang, J.Y.; Jeong, Y.; Lee, J.J. Antitumor effect of all-trans retinoic acid-encapsulated nanoparticles of methoxy poly(ethylene glycol)-conjugated chitosan against CT-26 colon carcinoma in vitro. J. Pharm. Sci., 2008, 97, 4011-4019.
[51]
Sadreddini, S.; Safaralizadeh, R.; Baradaran, B.; Maleki, L.A.; Feizi, M.A.H.; Shanehbandi, D.; Niaragh, F.J.; Sadreddini, S.; Kafil, H.S.; Younesi, V.; Yousefi, M. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol. Lett., 2017, 181, 79-86.
[52]
Nath, B.; Nath, L.K. Design, development and optimization of oral colon targeted drug delivery system of azathioprine using biodegradable polymers. Pharm. Dev. Technol., 2013, 18, 1131-1139.
[53]
Vassie, J.A.; Whitelock, J.M.; Lord, M.S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater., 2017, 50, 127-141.
[54]
Jalalian, S.H.; Taghdisi, S.M.; Hamedani, N.S.; Kalat, S.A.M.; Lavaee, P. ZandKarimi, M.; Ghows, N.; Jaafari, M.R.; Naghibi, S.; Danesh, N.M.; Ramezani, M.; Abnous, K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur. J. Pharm. Sci., 2013, 50, 191-197.
[55]
Martins, A.F.; Follmann, H.D.M.; Monteiro, J.P.; Bonafe, E.G.; Nocchi, S.; Silva, C.T.P.; Rubira, A.F.; Muniz, E.C. Polyelectrolyte complex containing silver nanoparticles with antitumor property on Caco-2 colon cancer cells. Int. J. Biol. Macromol., 2015, 79, 748-755.
[56]
Hanafi-Bojd, M.Y.; Jaafari, M.R.; Ramezanian, N.; Xue, M.; Amin, M.; Shahtahmassebi, N.; Nikouei, B.M. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur. J. Pharm. Biopharm., 2015, 89, 248-258.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy