Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Hybrid Magnetic Nanostructures For Cancer Diagnosis And Therapy

Author(s): Ioana L. Ardelean, Denisa Ficai*, Maria Sonmez, Ovidiu Oprea, Gheorghe Nechifor, Ecaterina Andronescu, Anton Ficai and Mihail A. Titu

Volume 19, Issue 1, 2019

Page: [6 - 16] Pages: 11

DOI: 10.2174/1871520618666181109112655

Price: $65

Abstract

Cancer is the second disease in the world from the point of view of mortality. The conventional routes of treatment were found to be not sufficient and thus alternative ways are imposed. The use of hybrid, magnetic nanostructures is a promising way for simultaneous targeted diagnosis and treatment of various types of cancer. For this reason, the development of core@shell structures was found to be an efficient way to develop stable, biocompatible, non-toxic carriers with shell-dependent internalization capacity in cancer cells. So, the multicomponent approach can be the most suitable way to assure the multifunctionality of these nanostructures to achieve the desired/necessary properties. The in vivo stability is mostly assured by the coating of the magnetic core with various polymers (including polyethylene glycol, silica etc.), while the targeting capacity is mostly assured by the decoration of these nanostructures with folic acid. Unfortunately, there are also some limitations related to the multilayered approach. For instance, the increasing of the thickness of layers leads to a decrease the magnetic properties, (hyperthermia and guiding ability in the magnetic field, for instance), the outer shell should contain the targeting molecules (as well as the agents helping the internalization into the cancer cells), etc.

Keywords: SPIONs, cancer therapy, Drug Delivery System (DDS), hybrid magnetic nanostructures, hyperthermia, non-toxic carriers.

Graphical Abstract

[1]
Kolhatkar, A.G.; Jamison, A.C.; Litvinov, D.; Willson, R.C.; Lee, T.R. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci., 2013, 14, 15977-16009.
[2]
Jordan, A.; Scholz, R.; Wust, P.; Fahling, H.; Felix, R. Magnetic Fluid Hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Mater, 1999, 201, 413-419.
[3]
Vallejo-Fernandez, G.; Whear, O.; Roca, A.G.; Hussain, S.; Timmis, J.; Patel, V.; O’Grady, K. Mechanisms of hyperthermia in magnetic nanoparticles. J. Phys. D Appl. Phys., 2013, 46(31), 312001.
[4]
Frey, N.A.; Peng, S.; Cheng, K.; Sun, S.H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev., 2009, 38, 2532-2542.
[5]
Horak, D.; Rittich, B.; Spanova, A.; Benes, M.J. Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics. Polymer., 2005, 46, 1245-1255.
[6]
Neuberger, T.; Schopf, B.; Hofmann, H.; Hofmann, M.; Von-Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293, 483-496.
[7]
Jordan, A.; Scholz, R.; Maier-Hauff, K.; Johannsen, M.; Wust, P.; Nadobny, J.; Schirra, H.; Schmidt, H.; Deger, S.; Loening, S.; Lanksch, W. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater., 2001, 225, 118-126.
[8]
Lepadatu, C.I.; Culita, D.C.; Patron, L. A rapid estimation of the average size of the core-shell nanoparticles by calcination and modelling. J. Optoelectron. Adv. Mater., 2008, 10, 512-514.
[9]
Sjogren, C.E.; Johansson, C.; Naevestad, A.; Sontum, P.C. BrileySaebo, K.; Fahlvik, A.K. Crystal size and properties of Superparamagnetic Iron Oxide (SPIO) particles. Magn. Reson. Imaging, 1997, 15, 55-67.
[10]
Lee, Y.; Lee, J.; Bae, C.J.; Park, J.G.; Noh, H.J.; Park, J.H.; Hyeon, T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater., 2005, 15(3), 503-509.
[11]
Chung, S.H.; Hoffmann, A.; Bader, S.D.; Liu, C.; Kay, B.; Makowski, L.; Chen, L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett., 2004, 85, 2971-2973.
[12]
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Bruehl, R.; Alper, M.D.; Bertozzi, C.R.; Clarke, J. Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA, 2004, 101, 129-134.
[13]
Yadollahpour, A. Magnetic nanoparticles in medicine: A review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[14]
Bulte, J.W.M.; Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed., 2004, 17, 484-499.
[15]
Nitin, N.; La-Conte, L.E.W.; Zurkiya, O.; Hu, X.; Bao, G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem., 2004, 9, 706-712.
[16]
Fischer, D.; Li, Y.X.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24, 1121-1131.
[17]
Dobson, J. Magnetic properties of biological materials. In. Biological effects of electromagnetic fields: Bioengineering and biophysical aspects of electromagnetic fields, 2006, 3, 101-103.
[18]
Hou, S.J.; Tong, S.; Zhou, J.; Bao, G. Block copolymer-based gadolinium nanoparticles as MRI contrast agents with high T-1 relaxivity. Nanomedicine UK, 2012, 7, 211-218.
[19]
Culita, D.C.; Patron, L.; Oprea, O.; Bartha, C.; Palade, P.; Teodorescu, V.; Filoti, G. Detailed characterization of functionalized magnetite and ascertained effects. J. Nanopart. Res., 2013, 15(9), 1916.
[20]
Carp, O.; Patron, L.; Culita, D.C.; Budrugeac, P.; Feder, M.; Diamandescu, L. Thermal analysis of two types of dextran-coated magnetite. J. Therm. Anal. Calorim., 2010, 101, 181-187.
[21]
Culita, D.C.; Marinescu, G.; Patron, L.; Diamandescu, L. Synthesis and characterization of maltol modified magnetite nanoparticles. Rev. Roumaine De Chimie., 2010, 55, 131-135.
[22]
Culita, D.C.; Marinescu, G.; Patron, L.; Carp, O.; Cizmas, C.B.; Diamandescu, L. Superparamagnetic nanomagnetites modified with histidine and tyrosine. Mater. Chem. Phys., 2008, 111, 381-385.
[23]
Neuwelt, E.A.; Varallyay, P.; Bago, A.G.; Muldoon, L.L.; Nesbit, G.; Nixon, R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol., 2004, 30, 456-471.
[24]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation, 2007, 115, 2076-2086.
[25]
Owens, D.E.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307, 93-102.
[26]
Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54, 459-476.
[27]
Strijkers, G.J.; Kluza, E.; Van-Tilborg, G.A.F.; Van-Der-Schaft, D.W.J.; Griffioen, A.W.; Mulder, W.J.; Nicolay, K. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis, 2010, 13, 161-173.
[28]
Dobson, J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther., 2006, 13, 283-287.
[29]
Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Transact. Nanobiosci, 2004, 3, 66-73.
[30]
Bonnemain, B. Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications - A review. J. Drug Target., 1998, 6, 167-174.
[31]
Patron, L.; Marinescu, G.; Culita, D.; Diamandescu, L.; Carp, O. Thermal stability of amino acid- (tyrosine and tryptophan) coated magnetites. J. Therm. Anal. Calorim., 2008, 91, 627-632.
[32]
Culita, D.C.; Patron, L.; Teodorescu, V.S.; Balint, L. Synthesis and characterization of spinelic ferrites obtained from coordination compounds as precursors. J. Alloys Compd., 2007, 432, 211-216.
[33]
Marinescu, G.; Patron, L.; Culita, D.C.; Neagoe, C.; Lepadatu, C.I.; Balint, I.; Bessais, L.; Cizmas, C.B. Synthesis of magnetite nanoparticles in the presence of aminoacids. J. Nanopart. Res., 2006, 8, 1045-1051.
[34]
Culita, D.C.; Marinescu, G.; Patron, L.; Stanica, N. Synthesis and characterization of cobalt ferrite nanoparticles coated with dehydrocholate anions. Rev. Roumaine De Chimie., 2006, 51, 503-508.
[35]
Mindru, I.; Gingasu, D.; Culita, D.C.; Marinescu, G.; Patron, L. Design and Synthesis of Magnetic Ferrites. In:. Dekker Encyclopedia of Nanoscience and Nanotechnology, Lyshevski, S.E., (Ed.), editor. 3rd edition ed. New York: CRC Press: 2014, 2176-2189.
[36]
Gingasu, D.; Mindru, I.; Patron, L.; Marinescu, G.; Preda, S.; Calderon-Moreno, J.M.; Osiceanu, P.; Somacescu, S.; Stanica, N.; Popa, M.; Saviuc, C. Soft chemistry routes for the preparation of Ag-CoFe2O4 nanocomposites. Ceram. Int., 2017, 43, 3284-3291.
[37]
Gingasu, D.; Mindru, I.; Patron, L.; Calderon-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; Gradisteanu, G. Green Synthesis methods of CoFe2O4 and Ag- CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J. Nanomater, 2016, 2016
[38]
Gingasu, D.; Mindru, I.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Patron, L.; Ianculescu, A.; Oprea, O.; Nita, S.; Paraschiv, I.; Popa, M. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract. Mater. Chem. Phys., 2016, 182, 219-230.
[39]
Jin, R.R.; Lin, B.B.; Li, D.Y.; Ai, H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications. Curr. Opin. Pharmacol., 2014, 18, 18-27.
[40]
Duran, J.D.G.; Arias, J.L.; Gallardo, V.; Delgado, A.V. Magnetic colloids as drug vehicles. J. Pharm. Sci., 2008, 97, 2948-2983.
[41]
Jolivet, J.P.; Henry, M.; Livage, J. Metal oxide chemistry and synthesis: From solution to solid state; New York Wiley, 2000.
[42]
Tartaj, P.; Morales, M.D.; Veintemillas-Verdaguer, S.; Gonzalez-Carreno, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R182-R197.
[43]
Ficai, D.; Ficai, A.; Trusca, R.; Vasile, B.S.; Voicu, G.; Guran, C.; Andronescu, E. Synthesis and characterization of magnetite-polysulfone micro- and nanobeads with improved chemical stability in acidic Media. Curr. Nanosci., 2013, 9, 271-277.
[44]
Sanvicens, N.; Marco, M.P. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26, 425-433.
[45]
Lu, A.H.; Salabas, E.L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
[46]
Kaaki, K.; Herve-Aubert, K.; Chiper, M.; Shkilnyy, A.; Souce, M.; Benoit, R. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 2012, 28, 1496-1505.
[47]
Alexiou, C.; Arnold, W.; Klein, R.J.; Parak, F.G.; Hulin, P.; Bergemann, C. Locoregional cancer treatment with magnetic drug targeting. Cancer Res., 2000, 60, 6641-6648.
[48]
Shi, W.L.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M.T.; Prasad, P.N. Anisotropic growth of PbSe nanocrystals on Au-Fe3O4 hybrid nanoparticles. Adv. Mater., 2006, 18, 1889-1894.
[49]
Corchero, J.; Villaverde, A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol., 2009, 27, 468-476.
[50]
World Cancer Report Lyon; IARC Publications: France, 2008.
[51]
Mami, M.; Oudadesse, H.; Dorbez-Sridi, R.; Dietrich, E.; Rocherulle, J. Analysis of in vitro reaction layers formed on 48S4 glass for applications in biomaterial field. Eur. Phys. J. Appl. Phys., 2007, 40, 189-196.
[52]
Most Common Causes of Cancer Death, 2012. Available at. https://www.pinterest.co.uk/pin/518688082065762054/
[53]
Weissleder, R. Molecular imaging in cancer. Science, 2006, 312, 1168-1171.
[54]
Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 2013, 3, 595-615.
[55]
Durr, S.; Janko, C.; Lyer, S.; Tripal, P.; Schwarz, M.; Zaloga, J. Magnetic nanoparticles for cancer therapy. Nanotechnol. Rev., 2013, 2, 395-409.
[56]
Guenoun, J.; Koning, G.A.; Doeswijk, G.; Bosman, L.; Wielopolski, P.A.; Krestin, G.P.; Bernsen, M.R. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Trans, 2012, 21, 191-205.
[57]
Liu, Y.; He, Z.J.; Xu, B.; Wu, Q.Z.; Liu, G.; Zhu, H.; Zhong, Q.; Deng, D.Y.; Ai, H.; Yue, Q.; Wei, Y. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury. Brain Res., 2011, 1391, 24-35.
[58]
Liu, G.; Yang, H.; Zhang, X.M.; Shao, Y.; Jiang, H. MR imaging for the longevity of mesenchymal stem cells labeled with poly-L-lysine resovist complexes. Contrast Med. Mol. I, 2010, 5, 53-58.
[59]
Tseng, C.L.; Shih, I.L.; Stobinski, L.; Lin, F.H. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials, 2010, 31, 5427-5435.
[60]
Tran, L.A.; Krishnamurthy, R.; Muthupillai, R.; Cabreira-Hansen, M.D.; Willerson, J.T.; Perin, E.C. Gadonanotubes as magnetic nanolabels for stem cell detection. Biomaterials, 2010, 31, 9482-9491.
[61]
Yang, C.Y.; Tai, M.F.; Chen, S.T.; Wang, Y.T.; Chen, Y.F.; Hsiao, J.K.; Wang, J.L.; Liu, H.M. Labeling of human mesenchymal stem cell: Comparison between paramagnetic and superparamagnetic agents. J. Appl. Phys, 2009, 105, (7), 07B314.
[62]
Pawelczyk, E.; Arbab, A.S.; Chaudhry, A.; Balakumaran, A.; Robey, P.G.; Frank, J.A. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: Implications for cellular therapy. Stem Cells, 2008, 26, 1366-1375.
[63]
Yang, L.; Xia, Y.; Zhao, H.; Zhao, J.; Zhu, X. Magnetic resonance imaging of transplanted neural stem cells in Parkinson disease rats. J. Huazhong Univ. Sci. Tech, 2006, 26, 492.
[64]
Berry, I.; Benderbous, S.; Ranjeva, J.P. GraciaMeavilla, D.; Manelfe, C.; LeBihan, D. Contribution of Sinerem(R) used as blood-pool contrast agent: Detection of cerebral blood volume changes during apnea in the rabbit. Magn. Reson. Med., 1996, 36, 415-419.
[65]
Jung, C.W. Surface-properties of superparamagnetic iron-oxide mr contrast agents - ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging, 1995, 13, 675-691.
[66]
Li, W.; Tutton, S.; Vu, A.T.; Pierchala, L.; Li, B.S.Y.; Lewis, J.M.; Prasad, P.V.; Edelman, R.R. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging, 2005, 21, 46-52.
[67]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for MR imaging: Agents, techniques and cardiovascular applications. Basic Res. Cardiol., 2008, 103, 122-130.
[68]
Sun, C.; Lee, J.S.H.; Zhang, M.Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60, 1252-1265.
[69]
Semelka, R.C.; Helmberger, T.K.G. Contrast agents for MR imaging of the liver. Radiology, 2001, 218, 27-38.
[70]
Corot, C.; Robert, P.; Idee, J.M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev., 2006, 58, 1471-1504.
[71]
Harisinghani, M.G.; Barentsz, J.; Hahn, P.F.; Deserno, W.M.; Tabatabaei, S.; van-de-Kaa, C.H. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med., 2003, 348, 2491-2499.
[72]
Enochs, W.S.; Harsh, G.; Hochberg, F.; Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. Jmri-J. Magn. Reson. Im., 1999, 9, 228-232.
[73]
Wickline, S.A.; Neubauer, A.M.; Winter, P.M.; Caruthers, S.D.; Lanza, G.M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging, 2007, 25, 667-680.
[74]
Corot, C.; Petry, K.G.; Trivedi, R.; Saleh, A.; Jonkmanns, C.; Le-Bas, J.F. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol., 2004, 39, 619-625.
[75]
Kooi, M.E.; Cappendijk, V.C.; Cleutjens, K.B.J.M.; Kessels, A.G.H.; Kitslaar, P.J.E.H.M.; Borgers, M. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 2003, 107, 2453-2458.
[76]
Trivedi, R.A. U-King-Im, J.M.; Graves, M.J.; Cross, J.J.; Horsley, J.; Goddard, M.J. In vivo detection of macrophages in human carotid atheroma - Temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke, 2004, 35, 1631-1635.
[77]
Culita, D.C.; Marinescu, G.; Patron, L. magnetita eterna enigma. Bucuresti: Matrix Rom. 2009.
[78]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26, 3995-4021.
[79]
Nielsen, O.S.; Horsman, M.; Overgaard, J. A future for hyperthermia in cancer treatment? Eur. J. Cancer, 2001, 37, 1587-1589.
[80]
Kim, D.H.; Lee, S.H.; Kim, K.N.; Kim, K.M.; Shim, I.B.; Lee, Y.K. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application. J. Magn. Magn. Mater., 2005, 293, 320-327.
[81]
Kawashita, M.; Tanaka, M.; Kokubo, T.; Inoue, Y.; Yao, T.; Hamada, S. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials, 2005, 26, 2231-2238.
[82]
Unsoy, G.; Gunduz, U.; Oprea, O.; Ficai, D.; Sonmez, M.; Radulescu, M. Magnetite: From synthesis to applications. Curr. Top. Med. Chem., 2015, 15, 1622-1640.
[83]
Teodor, E.D.; Gatea, F.; Ficai, A.; Radu, G.L. Functionalized magnetic nanostructures for anticancer therapy. Curr. Drug Targets, 2018, 19(3), 239-247.
[84]
Laurent, S.; Dutz, S.; Hafeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface. Science., 2011, 166, 8-23.
[85]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63, 24-46.
[86]
Hafeli, U.O.; Pauer, G.J. In vitro and in vivo toxicity of magnetic microspheres. J. Magn. Magn. Mater., 1999, 194, 76-82.
[87]
Luderer, A.A.; Borrelli, N.F.; Panzarino, J.N.; Mansfield, G.R.; Hess, D.M.; Brown, J.L. Glass-ceramic-mediated, magneticfield- induced localized hyperthermia: Response of a murine mammary carcinoma. Radiat. Res., 1983, 94, 190-198.
[88]
Chan, D.C.F.; Kirpotin, D.B.; Bunn, P.A. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater., 1993, 122, 374-378.
[89]
Sneed, P.K.; Stea, B. Editors. Thermoradiotherapy and thermochemotherapy. In: Seegenschmiedt, M.H.; Fessenden, P.; Vernon, C.C. Eds. Berlin: Springer. 1996.
[90]
Kim, D.H.; Lee, S.H.; Kim, K.N.; Kim, K.M.; Shim, I.B.; Lee, Y.K. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J. Magn. Magn. Mater., 2005, 293, 287-292.
[91]
Brusentsov, N.A.; Brusentsova, T.N.; Filinova, E.Y.; Kuznetsov, V.D.; Shumakov, L.I.; Jurchenko, N.Y. Magnetic fluid thermo chemotherapy of murine tumors. J. Magn. Magn. Mater., 2005, 293, 450-454.
[92]
Rosensweig, R.E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater., 2002, 252, 370-374.
[93]
Atsumi, T.; Jeyadevan, B.; Sato, Y.; Tohji, K. Heating efficiency of magnetite particles exposed to AC magnetic field. J. Magn. Magn. Mater., 2007, 310, 2841-2843.
[94]
Armijo, L.M.; Brandt, Y.I.; Mathew, D.; Yadav, S.; Maestas, S.; Rivera, A.C. Iron oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials., 2012, 2, 134-146.
[95]
Kusaka, M.; Takegami, K.; Sudo, A.; Yamazaki, T.; Kawamura, J.; Uchida, A. Effect of hyperthermia by magnetite cement on tumor-induced bone destruction. J. Orthop. Sci., 2002, 7, 354-357.
[96]
Takegami, K.; Sano, T.; Wakabayashi, H.; Sonoda, J.; Yamazaki, T.; Morita, S. New ferromagnetic bone cement for local hyperthermia. J. Biomed. Mater. Res., 1998, 43, 210-214.
[97]
Ohura, K.; Ikenaga, M.; Nakamura, T.; Yamamuro, T.; Ebisawa, Y.; Kokubo, T. A heat-generating bioactive glass ceramic for hyperthermia. J. Appl. Biomater., 1991, 2, 153-159.
[98]
Leventouri, T.; Kis, A.C.; Thompson, J.R.; Anderson, I.M. Structure, microstructure, and magnetism in ferrimagnetic bioceramics. Biomaterials, 2005, 26, 4924-4931.
[99]
Iwasaki, T.; Nakatsuka, R.; Murase, K.; Takata, H.; Nakamura, H.; Watano, S. Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route. Int. J. Mol. Sci., 2013, 14, 9365-9378.
[100]
Huilgol, N.G.; Gupta, S.; Sridhar, C.R. Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial. J. Canc. Res. Ther., 2010, 6, 492-496.
[101]
Hu, R.L.; Ma, S.L.; Li, H.; Ke, X.F.; Wang, G.Q.; Wei, D.S. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol. Lett., 2011, 2, 1161-1164.
[102]
Shetake, N.G.; Kumar, A.; Gaikwad, S.; Ray, P.; Desai, S.; Ningthoujam, R.S. Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation. Int. J. Hyperthermia, 2015, 31, 909-919.
[103]
Widder, K.J.S.A.; Scarpelli, G.D. Magnetic microspheres: A model system of site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med., 1978, 158, 141-146.
[104]
Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials., 2010, 3, 2412-2446.
[105]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5, 1249-1263.
[106]
Schlorf, T.; Meincke, M.; Kossel, E.; Gluer, C.C.; Jansen, O.; Mentlein, R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int. J. Mol. Sci., 2011, 12, 12-23.
[107]
Al-Faraj, A.; Bessaad, A.; Cieslar, K.; Lacroix, G.; Canet-Soulas, E.; Cremillieux, Y. Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology, 2010, 21(17), 175103.
[108]
Barraud, L.; Merle, P.; Soma, E.; Lefrancois, L.; Guerret, S.; Chevallier, M. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J. Hepatol., 2005, 42, 736-743.
[109]
Han, H.D.; Mangala, L.S.; Lee, J.W.; Shahzad, M.M.K.; Kim, H.S.; Shen, D.Y. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin. Cancer Res., 2010, 16, 3910-3922.
[110]
Parveen, S.; Mitra, M.; Krishnakumar, S.; Sahoo, S.K. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line. Acta Biomater., 2010, 6, 3120-3131.
[111]
Maeng, J.H.; Lee, D.H.; Jung, K.H.; Bae, Y.H.; Park, I.S.; Jeong, S. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 2010, 31, 4995-5006.
[112]
Chao, X.; Guo, L.L.; Zhao, Y.Y.; Hua, K.; Peng, M.L.; Chen, C. PEG-Modified GoldMag Nanoparticles (PGMNs) combined with the magnetic field for local drug delivery. J. Drug Target., 2011, 19, 161-170.
[113]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2010, 110, 2574.
[114]
Williams, M.J.; Corr, S.A. Magnetic nanoparticles for targeted cancer diagnosis and therapy. Nanomedicine., 2013, 5, 29-63.
[115]
Cole, A.J.; David, A.E.; Wang, J.X.; Galban, C.J.; Hill, H.L.; Yang, V.C. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials, 2011, 32, 2183-2193.
[116]
Verma, N.K.; Crosbie-Staunton, K.; Satti, A.; Gallagher, S.; Ryan, K.B.; Doody, T. Magnetic core-shell nanoparticles for drug delivery by nebulization. J. Aerosol. Med. Pulm. D, 2013, 26, A32-A33.
[117]
Alphandery, E.; Faure, S.; Seksek, O.; Guyot, F.; Chebbi, I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 2011, 5, 6279-6296.
[118]
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T. A search for a doubly-charged Higgs boson in pp collisions at root s=7 TeV. Eur. Phys. J. C, 2012, 72.
[119]
DeNardo, S.J.; DeNardo, G.L.; Natarajan, A.; Miers, L.A.; Foreman, A.R.; Gruettner, C. Thermal dosimetry predictive of efficacy of In-111-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J. Nucl. Med., 2007, 48, 437-444.
[120]
Dutz, S.; Kettering, M.; Hilger, I.; Muller, R.; Zeisberger, M. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology, 2011, 22(26), 265102.
[121]
Tanaka, K.; Ito, A.; Kobayashi, T.; Kawamura, T.; Shimada, S.; Matsumoto, K. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer, 2005, 116, 624-633.
[122]
Tang, Q.S.; Chen, D.Z.; Xue, W.Q.; Xiang, J.Y.; Gong, Y.C.; Zhang, L. Preparation and biodistribution of Re-188-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (Re-188-folate-CDDP/HSA MNPs) in vivo. Int. J. Nanomedicine, 2011, 6, 3077-3085.
[123]
Wang, L.F.; Dong, J.; Ouyang, W.W.; Wang, X.W.; Tang, J.T. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol. Rep., 2012, 27, 719-726.
[124]
Toraya-Brown, S.; Sheen, M.R.; Baird, J.R.; Barry, S.; Demidenko, E.; Turk, M.J. Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Integr. Biol., 2013, 5, 159-171.
[125]
Lee, J.E.; Lee, N.; Kim, H.; Kim, J.; Choi, S.H.; Kim, J.H. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc., 2010, 132, 552-557.
[126]
Lee, J.; Kim, H.; Kim, S.; Lee, H.; Kim, J.; Kim, N. A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform. J. Mater. Chem., 2012, 22, 14061-14067.
[127]
Ficai, D.; Sonmez, M.; Albu, M.G.; Mihaiescu, D.E.; Ficai, A.; Bleotu, C. Antitumoral materials with regenerative function obtained using a layer-by-layer technique. Drug Des. Devel. Ther., 2015, 9, 1269-1279.
[128]
Ficai, A.; Andronescu, E.; Voicu, G.; Manzu, D.; Ficai, M. Layer by layer deposition of hydroxyapatite onto the collagen matrix. Materials Science & Engineering C. Mater. Biol. App., 2009, 29, 2217-2220.
[129]
Ilie, A.; Andronescu, E.; Ficai, D.; Voicu, G.; Ficai, M.; Maganu, M.; Ficai, A. New approaches in layer by layer synthesis of collagen/hydroxyapatite composite materials. Cent. Eur. J. Chem., 2011, 9, 283-289.
[130]
Yipel, M.; Ghica, M.V.; Kaya, M.G.A.; Spoiala, A.; Radulescu, M.; Ficai, D. Multifunctional materials for cancer therapy: From antitumoral agents to innovative administration. Curr. Org. Chem., 2016, 20, 2934-2948.
[131]
Andronescu, E.; Ficai, A.; Georgiana, M.; Mitran, V.; Sonmez, M.; Ficai, D. Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technol. Cancer Res. Treat., 2013, 12, 275-284.
[132]
Andronescu, E.; Ficai, M.; Voicu, G.; Ficai, D.; Maganu, M.; Ficai, A. Synthesis and characterization of collagen/hydroxyapatite: Magnetite composite material for bone cancer treatment. J. Mater. Sci. Mater. Med., 2010, 21, 2237-2242.
[133]
Zhang, Y.L.; Zhai, D.; Xu, M.C.; Yao, Q.Q.; Chang, J.; Wu, C.T. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J. Mater. Chem. B., 2016, 4(17), 42874-42886.
[134]
Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomedicine, 2016, 11, 1927-1945.
[135]
Pattnaik, S.; Swain, K.; Lin, Z.Q. Graphene and graphene-based nanocomposites: Biomedical applications and biosafety. J. Mater. Chem. B., 2016, 4, 7813-7831.
[136]
Zhang, J.H.; Zhao, S.C.; Zhu, M.; Zhu, Y.F.; Zhang, Y.D.; Liu, Z.T. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B., 2014, 2, 7583-7595.
[137]
Farzin, A.; Fathi, M.; Emadi, R. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Mater. Sci. Engg. C-Mater. Biol. App., 2017, 70, 21-31.
[138]
Malekzadeh, A.M.; Ramazani, A.; Rezaei, S.J.T.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73.
[139]
Maboudi, S.A.; Shojaosadati, S.A.; Arpanaei, A. Synthesis and characterization of multilayered nanobiohybrid magnetic particles for biomedical applications. Mater. Des., 2017, 115, 317-324.
[140]
Gaspar, A.S.; Wagner, F.E.; Amaral, V.S.; Lima, S.A.C.; Khomchenko, V.A.; Santos, J.G. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils. Spectrochim. Acta A, 2017, 172, 135-146.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy