[1]
Kolhatkar, A.G.; Jamison, A.C.; Litvinov, D.; Willson, R.C.; Lee, T.R. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci., 2013, 14, 15977-16009.
[2]
Jordan, A.; Scholz, R.; Wust, P.; Fahling, H.; Felix, R. Magnetic Fluid Hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Mater, 1999, 201, 413-419.
[3]
Vallejo-Fernandez, G.; Whear, O.; Roca, A.G.; Hussain, S.; Timmis, J.; Patel, V.; O’Grady, K. Mechanisms of hyperthermia in magnetic nanoparticles. J. Phys. D Appl. Phys., 2013, 46(31), 312001.
[4]
Frey, N.A.; Peng, S.; Cheng, K.; Sun, S.H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev., 2009, 38, 2532-2542.
[5]
Horak, D.; Rittich, B.; Spanova, A.; Benes, M.J. Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics. Polymer., 2005, 46, 1245-1255.
[6]
Neuberger, T.; Schopf, B.; Hofmann, H.; Hofmann, M.; Von-Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293, 483-496.
[7]
Jordan, A.; Scholz, R.; Maier-Hauff, K.; Johannsen, M.; Wust, P.; Nadobny, J.; Schirra, H.; Schmidt, H.; Deger, S.; Loening, S.; Lanksch, W. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater., 2001, 225, 118-126.
[8]
Lepadatu, C.I.; Culita, D.C.; Patron, L. A rapid estimation of the average size of the core-shell nanoparticles by calcination and modelling. J. Optoelectron. Adv. Mater., 2008, 10, 512-514.
[9]
Sjogren, C.E.; Johansson, C.; Naevestad, A.; Sontum, P.C. BrileySaebo, K.; Fahlvik, A.K. Crystal size and properties of Superparamagnetic Iron Oxide (SPIO) particles. Magn. Reson. Imaging, 1997, 15, 55-67.
[10]
Lee, Y.; Lee, J.; Bae, C.J.; Park, J.G.; Noh, H.J.; Park, J.H.; Hyeon, T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater., 2005, 15(3), 503-509.
[11]
Chung, S.H.; Hoffmann, A.; Bader, S.D.; Liu, C.; Kay, B.; Makowski, L.; Chen, L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett., 2004, 85, 2971-2973.
[12]
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Bruehl, R.; Alper, M.D.; Bertozzi, C.R.; Clarke, J. Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA, 2004, 101, 129-134.
[13]
Yadollahpour, A. Magnetic nanoparticles in medicine: A review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[14]
Bulte, J.W.M.; Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed., 2004, 17, 484-499.
[15]
Nitin, N.; La-Conte, L.E.W.; Zurkiya, O.; Hu, X.; Bao, G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem., 2004, 9, 706-712.
[16]
Fischer, D.; Li, Y.X.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24, 1121-1131.
[17]
Dobson, J. Magnetic properties of biological materials. In. Biological
effects of electromagnetic fields: Bioengineering and biophysical
aspects of electromagnetic fields, 2006, 3, 101-103.
[18]
Hou, S.J.; Tong, S.; Zhou, J.; Bao, G. Block copolymer-based gadolinium nanoparticles as MRI contrast agents with high T-1 relaxivity. Nanomedicine UK, 2012, 7, 211-218.
[19]
Culita, D.C.; Patron, L.; Oprea, O.; Bartha, C.; Palade, P.; Teodorescu, V.; Filoti, G. Detailed characterization of functionalized magnetite and ascertained effects. J. Nanopart. Res., 2013, 15(9), 1916.
[20]
Carp, O.; Patron, L.; Culita, D.C.; Budrugeac, P.; Feder, M.; Diamandescu, L. Thermal analysis of two types of dextran-coated magnetite. J. Therm. Anal. Calorim., 2010, 101, 181-187.
[21]
Culita, D.C.; Marinescu, G.; Patron, L.; Diamandescu, L. Synthesis and characterization of maltol modified magnetite nanoparticles. Rev. Roumaine De Chimie., 2010, 55, 131-135.
[22]
Culita, D.C.; Marinescu, G.; Patron, L.; Carp, O.; Cizmas, C.B.; Diamandescu, L. Superparamagnetic nanomagnetites modified with histidine and tyrosine. Mater. Chem. Phys., 2008, 111, 381-385.
[23]
Neuwelt, E.A.; Varallyay, P.; Bago, A.G.; Muldoon, L.L.; Nesbit, G.; Nixon, R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol., 2004, 30, 456-471.
[24]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation, 2007, 115, 2076-2086.
[25]
Owens, D.E.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307, 93-102.
[26]
Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54, 459-476.
[27]
Strijkers, G.J.; Kluza, E.; Van-Tilborg, G.A.F.; Van-Der-Schaft, D.W.J.; Griffioen, A.W.; Mulder, W.J.; Nicolay, K. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis, 2010, 13, 161-173.
[28]
Dobson, J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther., 2006, 13, 283-287.
[29]
Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Transact. Nanobiosci, 2004, 3, 66-73.
[30]
Bonnemain, B. Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications - A review. J. Drug Target., 1998, 6, 167-174.
[31]
Patron, L.; Marinescu, G.; Culita, D.; Diamandescu, L.; Carp, O. Thermal stability of amino acid- (tyrosine and tryptophan) coated magnetites. J. Therm. Anal. Calorim., 2008, 91, 627-632.
[32]
Culita, D.C.; Patron, L.; Teodorescu, V.S.; Balint, L. Synthesis and characterization of spinelic ferrites obtained from coordination compounds as precursors. J. Alloys Compd., 2007, 432, 211-216.
[33]
Marinescu, G.; Patron, L.; Culita, D.C.; Neagoe, C.; Lepadatu, C.I.; Balint, I.; Bessais, L.; Cizmas, C.B. Synthesis of magnetite nanoparticles in the presence of aminoacids. J. Nanopart. Res., 2006, 8, 1045-1051.
[34]
Culita, D.C.; Marinescu, G.; Patron, L.; Stanica, N. Synthesis and characterization of cobalt ferrite nanoparticles coated with dehydrocholate anions. Rev. Roumaine De Chimie., 2006, 51, 503-508.
[35]
Mindru, I.; Gingasu, D.; Culita, D.C.; Marinescu, G.; Patron, L. Design and Synthesis of Magnetic Ferrites. In:. Dekker Encyclopedia
of Nanoscience and Nanotechnology, Lyshevski, S.E., (Ed.),
editor. 3rd edition ed. New York: CRC Press: 2014, 2176-2189.
[36]
Gingasu, D.; Mindru, I.; Patron, L.; Marinescu, G.; Preda, S.; Calderon-Moreno, J.M.; Osiceanu, P.; Somacescu, S.; Stanica, N.; Popa, M.; Saviuc, C. Soft chemistry routes for the preparation of Ag-CoFe2O4 nanocomposites. Ceram. Int., 2017, 43, 3284-3291.
[37]
Gingasu, D.; Mindru, I.; Patron, L.; Calderon-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; Gradisteanu, G. Green Synthesis methods of CoFe2O4 and Ag-
CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial
potential. J. Nanomater, 2016, 2016
[38]
Gingasu, D.; Mindru, I.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Patron, L.; Ianculescu, A.; Oprea, O.; Nita, S.; Paraschiv, I.; Popa, M. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract. Mater. Chem. Phys., 2016, 182, 219-230.
[39]
Jin, R.R.; Lin, B.B.; Li, D.Y.; Ai, H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications. Curr. Opin. Pharmacol., 2014, 18, 18-27.
[40]
Duran, J.D.G.; Arias, J.L.; Gallardo, V.; Delgado, A.V. Magnetic colloids as drug vehicles. J. Pharm. Sci., 2008, 97, 2948-2983.
[41]
Jolivet, J.P.; Henry, M.; Livage, J. Metal oxide chemistry and synthesis: From solution to solid state; New York Wiley, 2000.
[42]
Tartaj, P.; Morales, M.D.; Veintemillas-Verdaguer, S.; Gonzalez-Carreno, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R182-R197.
[43]
Ficai, D.; Ficai, A.; Trusca, R.; Vasile, B.S.; Voicu, G.; Guran, C.; Andronescu, E. Synthesis and characterization of magnetite-polysulfone micro- and nanobeads with improved chemical stability in acidic Media. Curr. Nanosci., 2013, 9, 271-277.
[44]
Sanvicens, N.; Marco, M.P. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26, 425-433.
[45]
Lu, A.H.; Salabas, E.L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
[46]
Kaaki, K.; Herve-Aubert, K.; Chiper, M.; Shkilnyy, A.; Souce, M.; Benoit, R. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 2012, 28, 1496-1505.
[47]
Alexiou, C.; Arnold, W.; Klein, R.J.; Parak, F.G.; Hulin, P.; Bergemann, C. Locoregional cancer treatment with magnetic drug targeting. Cancer Res., 2000, 60, 6641-6648.
[48]
Shi, W.L.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M.T.; Prasad, P.N. Anisotropic growth of PbSe nanocrystals on Au-Fe3O4 hybrid nanoparticles. Adv. Mater., 2006, 18, 1889-1894.
[49]
Corchero, J.; Villaverde, A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol., 2009, 27, 468-476.
[50]
World Cancer Report Lyon; IARC Publications: France, 2008.
[51]
Mami, M.; Oudadesse, H.; Dorbez-Sridi, R.; Dietrich, E.; Rocherulle, J. Analysis of in vitro reaction layers formed on 48S4 glass for applications in biomaterial field. Eur. Phys. J. Appl. Phys., 2007, 40, 189-196.
[53]
Weissleder, R. Molecular imaging in cancer. Science, 2006, 312, 1168-1171.
[54]
Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics, 2013, 3, 595-615.
[55]
Durr, S.; Janko, C.; Lyer, S.; Tripal, P.; Schwarz, M.; Zaloga, J. Magnetic nanoparticles for cancer therapy. Nanotechnol. Rev., 2013, 2, 395-409.
[56]
Guenoun, J.; Koning, G.A.; Doeswijk, G.; Bosman, L.; Wielopolski, P.A.; Krestin, G.P.; Bernsen, M.R. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Trans, 2012, 21, 191-205.
[57]
Liu, Y.; He, Z.J.; Xu, B.; Wu, Q.Z.; Liu, G.; Zhu, H.; Zhong, Q.; Deng, D.Y.; Ai, H.; Yue, Q.; Wei, Y. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury. Brain Res., 2011, 1391, 24-35.
[58]
Liu, G.; Yang, H.; Zhang, X.M.; Shao, Y.; Jiang, H. MR imaging for the longevity of mesenchymal stem cells labeled with poly-L-lysine resovist complexes. Contrast Med. Mol. I, 2010, 5, 53-58.
[59]
Tseng, C.L.; Shih, I.L.; Stobinski, L.; Lin, F.H. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials, 2010, 31, 5427-5435.
[60]
Tran, L.A.; Krishnamurthy, R.; Muthupillai, R.; Cabreira-Hansen, M.D.; Willerson, J.T.; Perin, E.C. Gadonanotubes as magnetic nanolabels for stem cell detection. Biomaterials, 2010, 31, 9482-9491.
[61]
Yang, C.Y.; Tai, M.F.; Chen, S.T.; Wang, Y.T.; Chen, Y.F.; Hsiao, J.K.; Wang, J.L.; Liu, H.M. Labeling of human mesenchymal stem
cell: Comparison between paramagnetic and superparamagnetic
agents. J. Appl. Phys, 2009, 105, (7), 07B314.
[62]
Pawelczyk, E.; Arbab, A.S.; Chaudhry, A.; Balakumaran, A.; Robey, P.G.; Frank, J.A. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: Implications for cellular therapy. Stem Cells, 2008, 26, 1366-1375.
[63]
Yang, L.; Xia, Y.; Zhao, H.; Zhao, J.; Zhu, X. Magnetic resonance imaging of transplanted neural stem cells in Parkinson disease rats. J. Huazhong Univ. Sci. Tech, 2006, 26, 492.
[64]
Berry, I.; Benderbous, S.; Ranjeva, J.P. GraciaMeavilla, D.; Manelfe, C.; LeBihan, D. Contribution of Sinerem(R) used as blood-pool contrast agent: Detection of cerebral blood volume changes during apnea in the rabbit. Magn. Reson. Med., 1996, 36, 415-419.
[65]
Jung, C.W. Surface-properties of superparamagnetic iron-oxide mr contrast agents - ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging, 1995, 13, 675-691.
[66]
Li, W.; Tutton, S.; Vu, A.T.; Pierchala, L.; Li, B.S.Y.; Lewis, J.M.; Prasad, P.V.; Edelman, R.R. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging, 2005, 21, 46-52.
[67]
Sosnovik, D.E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for MR imaging: Agents, techniques and cardiovascular applications. Basic Res. Cardiol., 2008, 103, 122-130.
[68]
Sun, C.; Lee, J.S.H.; Zhang, M.Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60, 1252-1265.
[69]
Semelka, R.C.; Helmberger, T.K.G. Contrast agents for MR imaging of the liver. Radiology, 2001, 218, 27-38.
[70]
Corot, C.; Robert, P.; Idee, J.M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev., 2006, 58, 1471-1504.
[71]
Harisinghani, M.G.; Barentsz, J.; Hahn, P.F.; Deserno, W.M.; Tabatabaei, S.; van-de-Kaa, C.H. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med., 2003, 348, 2491-2499.
[72]
Enochs, W.S.; Harsh, G.; Hochberg, F.; Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. Jmri-J. Magn. Reson. Im., 1999, 9, 228-232.
[73]
Wickline, S.A.; Neubauer, A.M.; Winter, P.M.; Caruthers, S.D.; Lanza, G.M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging, 2007, 25, 667-680.
[74]
Corot, C.; Petry, K.G.; Trivedi, R.; Saleh, A.; Jonkmanns, C.; Le-Bas, J.F. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol., 2004, 39, 619-625.
[75]
Kooi, M.E.; Cappendijk, V.C.; Cleutjens, K.B.J.M.; Kessels, A.G.H.; Kitslaar, P.J.E.H.M.; Borgers, M. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 2003, 107, 2453-2458.
[76]
Trivedi, R.A. U-King-Im, J.M.; Graves, M.J.; Cross, J.J.; Horsley, J.; Goddard, M.J. In vivo detection of macrophages in human carotid atheroma - Temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke, 2004, 35, 1631-1635.
[77]
Culita, D.C.; Marinescu, G.; Patron, L. magnetita eterna enigma. Bucuresti: Matrix Rom. 2009.
[78]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26, 3995-4021.
[79]
Nielsen, O.S.; Horsman, M.; Overgaard, J. A future for hyperthermia in cancer treatment? Eur. J. Cancer, 2001, 37, 1587-1589.
[80]
Kim, D.H.; Lee, S.H.; Kim, K.N.; Kim, K.M.; Shim, I.B.; Lee, Y.K. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application. J. Magn. Magn. Mater., 2005, 293, 320-327.
[81]
Kawashita, M.; Tanaka, M.; Kokubo, T.; Inoue, Y.; Yao, T.; Hamada, S. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials, 2005, 26, 2231-2238.
[82]
Unsoy, G.; Gunduz, U.; Oprea, O.; Ficai, D.; Sonmez, M.; Radulescu, M. Magnetite: From synthesis to applications. Curr. Top. Med. Chem., 2015, 15, 1622-1640.
[83]
Teodor, E.D.; Gatea, F.; Ficai, A.; Radu, G.L. Functionalized magnetic nanostructures for anticancer therapy. Curr. Drug Targets, 2018, 19(3), 239-247.
[84]
Laurent, S.; Dutz, S.; Hafeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface. Science., 2011, 166, 8-23.
[85]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63, 24-46.
[86]
Hafeli, U.O.; Pauer, G.J. In vitro and in vivo toxicity of magnetic microspheres. J. Magn. Magn. Mater., 1999, 194, 76-82.
[87]
Luderer, A.A.; Borrelli, N.F.; Panzarino, J.N.; Mansfield, G.R.; Hess, D.M.; Brown, J.L. Glass-ceramic-mediated, magneticfield- induced localized hyperthermia: Response of a murine mammary carcinoma. Radiat. Res., 1983, 94, 190-198.
[88]
Chan, D.C.F.; Kirpotin, D.B.; Bunn, P.A. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J. Magn. Magn. Mater., 1993, 122, 374-378.
[89]
Sneed, P.K.; Stea, B. Editors. Thermoradiotherapy and thermochemotherapy.
In: Seegenschmiedt, M.H.; Fessenden, P.; Vernon,
C.C. Eds. Berlin: Springer. 1996.
[90]
Kim, D.H.; Lee, S.H.; Kim, K.N.; Kim, K.M.; Shim, I.B.; Lee, Y.K. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J. Magn. Magn. Mater., 2005, 293, 287-292.
[91]
Brusentsov, N.A.; Brusentsova, T.N.; Filinova, E.Y.; Kuznetsov, V.D.; Shumakov, L.I.; Jurchenko, N.Y. Magnetic fluid thermo chemotherapy of murine tumors. J. Magn. Magn. Mater., 2005, 293, 450-454.
[92]
Rosensweig, R.E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater., 2002, 252, 370-374.
[93]
Atsumi, T.; Jeyadevan, B.; Sato, Y.; Tohji, K. Heating efficiency of magnetite particles exposed to AC magnetic field. J. Magn. Magn. Mater., 2007, 310, 2841-2843.
[94]
Armijo, L.M.; Brandt, Y.I.; Mathew, D.; Yadav, S.; Maestas, S.; Rivera, A.C. Iron oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials., 2012, 2, 134-146.
[95]
Kusaka, M.; Takegami, K.; Sudo, A.; Yamazaki, T.; Kawamura, J.; Uchida, A. Effect of hyperthermia by magnetite cement on tumor-induced bone destruction. J. Orthop. Sci., 2002, 7, 354-357.
[96]
Takegami, K.; Sano, T.; Wakabayashi, H.; Sonoda, J.; Yamazaki, T.; Morita, S. New ferromagnetic bone cement for local hyperthermia. J. Biomed. Mater. Res., 1998, 43, 210-214.
[97]
Ohura, K.; Ikenaga, M.; Nakamura, T.; Yamamuro, T.; Ebisawa, Y.; Kokubo, T. A heat-generating bioactive glass ceramic for hyperthermia. J. Appl. Biomater., 1991, 2, 153-159.
[98]
Leventouri, T.; Kis, A.C.; Thompson, J.R.; Anderson, I.M. Structure, microstructure, and magnetism in ferrimagnetic bioceramics. Biomaterials, 2005, 26, 4924-4931.
[99]
Iwasaki, T.; Nakatsuka, R.; Murase, K.; Takata, H.; Nakamura, H.; Watano, S. Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route. Int. J. Mol. Sci., 2013, 14, 9365-9378.
[100]
Huilgol, N.G.; Gupta, S.; Sridhar, C.R. Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial. J. Canc. Res. Ther., 2010, 6, 492-496.
[101]
Hu, R.L.; Ma, S.L.; Li, H.; Ke, X.F.; Wang, G.Q.; Wei, D.S. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol. Lett., 2011, 2, 1161-1164.
[102]
Shetake, N.G.; Kumar, A.; Gaikwad, S.; Ray, P.; Desai, S.; Ningthoujam, R.S. Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation. Int. J. Hyperthermia, 2015, 31, 909-919.
[103]
Widder, K.J.S.A.; Scarpelli, G.D. Magnetic microspheres: A model system of site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med., 1978, 158, 141-146.
[104]
Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials., 2010, 3, 2412-2446.
[105]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5, 1249-1263.
[106]
Schlorf, T.; Meincke, M.; Kossel, E.; Gluer, C.C.; Jansen, O.; Mentlein, R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int. J. Mol. Sci., 2011, 12, 12-23.
[107]
Al-Faraj, A.; Bessaad, A.; Cieslar, K.; Lacroix, G.; Canet-Soulas, E.; Cremillieux, Y. Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology, 2010, 21(17), 175103.
[108]
Barraud, L.; Merle, P.; Soma, E.; Lefrancois, L.; Guerret, S.; Chevallier, M. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J. Hepatol., 2005, 42, 736-743.
[109]
Han, H.D.; Mangala, L.S.; Lee, J.W.; Shahzad, M.M.K.; Kim, H.S.; Shen, D.Y. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin. Cancer Res., 2010, 16, 3910-3922.
[110]
Parveen, S.; Mitra, M.; Krishnakumar, S.; Sahoo, S.K. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line. Acta Biomater., 2010, 6, 3120-3131.
[111]
Maeng, J.H.; Lee, D.H.; Jung, K.H.; Bae, Y.H.; Park, I.S.; Jeong, S. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 2010, 31, 4995-5006.
[112]
Chao, X.; Guo, L.L.; Zhao, Y.Y.; Hua, K.; Peng, M.L.; Chen, C. PEG-Modified GoldMag Nanoparticles (PGMNs) combined with the magnetic field for local drug delivery. J. Drug Target., 2011, 19, 161-170.
[113]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2010, 110, 2574.
[114]
Williams, M.J.; Corr, S.A. Magnetic nanoparticles for targeted cancer diagnosis and therapy. Nanomedicine., 2013, 5, 29-63.
[115]
Cole, A.J.; David, A.E.; Wang, J.X.; Galban, C.J.; Hill, H.L.; Yang, V.C. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials, 2011, 32, 2183-2193.
[116]
Verma, N.K.; Crosbie-Staunton, K.; Satti, A.; Gallagher, S.; Ryan, K.B.; Doody, T. Magnetic core-shell nanoparticles for drug delivery by nebulization. J. Aerosol. Med. Pulm. D, 2013, 26, A32-A33.
[117]
Alphandery, E.; Faure, S.; Seksek, O.; Guyot, F.; Chebbi, I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 2011, 5, 6279-6296.
[118]
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T. A search for a doubly-charged Higgs boson in pp collisions at root s=7 TeV. Eur. Phys. J. C, 2012, 72.
[119]
DeNardo, S.J.; DeNardo, G.L.; Natarajan, A.; Miers, L.A.; Foreman, A.R.; Gruettner, C. Thermal dosimetry predictive of efficacy of In-111-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J. Nucl. Med., 2007, 48, 437-444.
[120]
Dutz, S.; Kettering, M.; Hilger, I.; Muller, R.; Zeisberger, M. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology, 2011, 22(26), 265102.
[121]
Tanaka, K.; Ito, A.; Kobayashi, T.; Kawamura, T.; Shimada, S.; Matsumoto, K. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer, 2005, 116, 624-633.
[122]
Tang, Q.S.; Chen, D.Z.; Xue, W.Q.; Xiang, J.Y.; Gong, Y.C.; Zhang, L. Preparation and biodistribution of Re-188-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (Re-188-folate-CDDP/HSA MNPs) in vivo. Int. J. Nanomedicine, 2011, 6, 3077-3085.
[123]
Wang, L.F.; Dong, J.; Ouyang, W.W.; Wang, X.W.; Tang, J.T. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol. Rep., 2012, 27, 719-726.
[124]
Toraya-Brown, S.; Sheen, M.R.; Baird, J.R.; Barry, S.; Demidenko, E.; Turk, M.J. Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy. Integr. Biol., 2013, 5, 159-171.
[125]
Lee, J.E.; Lee, N.; Kim, H.; Kim, J.; Choi, S.H.; Kim, J.H. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc., 2010, 132, 552-557.
[126]
Lee, J.; Kim, H.; Kim, S.; Lee, H.; Kim, J.; Kim, N. A multifunctional mesoporous nanocontainer with an iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform. J. Mater. Chem., 2012, 22, 14061-14067.
[127]
Ficai, D.; Sonmez, M.; Albu, M.G.; Mihaiescu, D.E.; Ficai, A.; Bleotu, C. Antitumoral materials with regenerative function obtained using a layer-by-layer technique. Drug Des. Devel. Ther., 2015, 9, 1269-1279.
[128]
Ficai, A.; Andronescu, E.; Voicu, G.; Manzu, D.; Ficai, M. Layer by layer deposition of hydroxyapatite onto the collagen matrix. Materials Science & Engineering C. Mater. Biol. App., 2009, 29, 2217-2220.
[129]
Ilie, A.; Andronescu, E.; Ficai, D.; Voicu, G.; Ficai, M.; Maganu, M.; Ficai, A. New approaches in layer by layer synthesis of collagen/hydroxyapatite composite materials. Cent. Eur. J. Chem., 2011, 9, 283-289.
[130]
Yipel, M.; Ghica, M.V.; Kaya, M.G.A.; Spoiala, A.; Radulescu, M.; Ficai, D. Multifunctional materials for cancer therapy: From antitumoral agents to innovative administration. Curr. Org. Chem., 2016, 20, 2934-2948.
[131]
Andronescu, E.; Ficai, A.; Georgiana, M.; Mitran, V.; Sonmez, M.; Ficai, D. Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technol. Cancer Res. Treat., 2013, 12, 275-284.
[132]
Andronescu, E.; Ficai, M.; Voicu, G.; Ficai, D.; Maganu, M.; Ficai, A. Synthesis and characterization of collagen/hydroxyapatite: Magnetite composite material for bone cancer treatment. J. Mater. Sci. Mater. Med., 2010, 21, 2237-2242.
[133]
Zhang, Y.L.; Zhai, D.; Xu, M.C.; Yao, Q.Q.; Chang, J.; Wu, C.T. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J. Mater. Chem. B., 2016, 4(17), 42874-42886.
[134]
Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int. J. Nanomedicine, 2016, 11, 1927-1945.
[135]
Pattnaik, S.; Swain, K.; Lin, Z.Q. Graphene and graphene-based nanocomposites: Biomedical applications and biosafety. J. Mater. Chem. B., 2016, 4, 7813-7831.
[136]
Zhang, J.H.; Zhao, S.C.; Zhu, M.; Zhu, Y.F.; Zhang, Y.D.; Liu, Z.T. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B., 2014, 2, 7583-7595.
[137]
Farzin, A.; Fathi, M.; Emadi, R. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Mater. Sci. Engg. C-Mater. Biol. App., 2017, 70, 21-31.
[138]
Malekzadeh, A.M.; Ramazani, A.; Rezaei, S.J.T.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73.
[139]
Maboudi, S.A.; Shojaosadati, S.A.; Arpanaei, A. Synthesis and characterization of multilayered nanobiohybrid magnetic particles for biomedical applications. Mater. Des., 2017, 115, 317-324.
[140]
Gaspar, A.S.; Wagner, F.E.; Amaral, V.S.; Lima, S.A.C.; Khomchenko, V.A.; Santos, J.G. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils. Spectrochim. Acta A, 2017, 172, 135-146.