[1]
Henao-Mejia, J.; Elinav, E.; Jin, C.C.; Hao, L.M.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J.; Camporez, J.P.; Gerald, I.S.; Shulman, G.I.; Gordon, J.I.; Hoffman, H.M.; Flavell, R.A. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 2012, 482, 179-184.
[2]
Harriman, G.; Greenwood, J.; Bhat, S.; Huang, X.; Wang, R.; Paul, D.; Tong, L.; Saha, A.K.; Westin, W.F.; Kapeller, R.; Harwood, H.J. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity and modulates dyslipidemia in rats. Proc. Natl. Acad. Sci. USA, 2016, 113, 1796-1805.
[3]
Luo, D.X.; Tong, D.J.; Rajput, S.; Wang, C.; Liao, D.F.; Cao, D.; Maser, E. Targeting Acetyl- CoA carboxylases: Small molecular inhibitors and their therapeutic potential. Recent Patents Anticancer Drug Discov., 2012, 7, 168-184.
[4]
Glund, S.; Schoelch, C.; Thomas, L.; Niessen, H.G.; Stiller, D.; Roth, G.J. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole- body glucose homeostasis in db/db mice. Diabetologia, 2012, 55, 2044-2053.
[5]
Boone, A.N.; Rodrigues, B.; Brownsey, R.W. Multiple-site phosphorylation of the 280kDa isoform of acetyl-CoA carboxylase in rat cardiac myocytes: Evidence that cAMP- dependent protein kinase mediates effects of beta-adrenergic stimulation. J. Biochem., 1999, 341, 347-354.
[6]
Gurvitz, A. Physiological function of mycobacterial mtFabD, an essential malonyl-CoA: AcpM transacylase of type 2 fatty acid synthase FASII, in yeast mct1Delta cells. Comp. Funct. Genomics, 2009, 1, 1-4.
[7]
Arthur, C.J.; Williams, C.; Pottage, K.; Ploskon, E.; Findlow, S.C.; Burston, S.G.; Simpson, T.J.; Crump, M.P.; Crosby, J. Structure and malonyl CoA-ACP transacylase binding of Streptomyces coelicolor fatty acid synthase acyl carrier protein. ACS Chem. Biol., 2009, 4, 625-636.
[8]
Huang, Y.S.; Ge, J.; Zhang, H.M.; Lei, J.Q.; Zhang, X.L.; Wang, H.H. Purification and characterization of the Mycobacterium tuberculosis FabD2, a novel malonyl-CoA:AcpM transacylase of fatty acid synthase. Protein Expr. Purif., 2006, 45, 393-399.
[9]
Thupari, J.N.; Pinn, M.L.; Kuhajda, F.P. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem. Biophys. Res. Commun., 2001, 285, 217-223.
[10]
Bourbeau, M.P.; Siegmund, A.; Allen, J.G.; Shu, H. Christopher, F.; Barthberger, M.D.; Kim, K.W.; Komorowski, R.; Graham, M.; Busby, J.; Wang, M.H.; Meyer, J.; Xu, Y.; Salyers, K.; Fielden, M.; Veniant, M.M.; Gu, W. Piperazine Oxadiazole Inhibitors of acetyl-CoA carboxylase. J. Med. Chem., 2013, 56, 10132-10141.
[11]
Munday, M.R.; Campbell, D.G.; Carling, D.; Hardie, D.G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetylCoA carboxylase. Eur. J. Biochem., 1989, 175, 331-338.
[12]
Ventura, F.V.; Costa, C.G.; IJlst, L.; Dorland, L.; Duran, M.; Jakobs, C. Broad specificity of carnitine palmitoyltransferase II towards long-chain acyl-CoA beta-oxidation intermediates and its practical approach to the synthesis of various long-chain acylcarnitines. J. Inherit. Metab. Dis., 1997, 20, 423-426.
[13]
Corbett, J.W. Review of recent Acetyl-CoA carboxylase inhibitor patents: Mid-2007-2008. Expert Opin. Ther. Pat., 2009, 19, 943-956.
[14]
Gu, Y.G.; Weitzberg, M.; Clark, R.F.; Xu, X.D.; Li, Q.; Lubbers, N.L.; Yang, Y.; Beno, D.W.A.; Widomski, D.L.; Zhang, T.Y.; Hansen, T.M.; Keyes, R.F.; Waring, J.F.; Carroll, S.L.; Wang, X.J.; Wang, R.Q.; Healan-Greenberg, C.H.; Blomme, E.A.; Beutel, B.A.; Sham, H.L.; Camp, H.S.N. -3-[2-(4-Alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl carboxy derivatives as acetyl-CoA carboxylase inhibitorss improvement of cardiovascular and neurological liabilities via structural modifications. J. Med. Chem., 2007, 50, 1078-1082.
[15]
Keil, S.; Muller, M.; Zoller, G.; Haschke, G.; Schroeter, K.; Glien, M.; Ruf, S.; Focken, I.; Herling, A.W.; Schmoll, D. Identification and synthesis of novel inhibitors of Acetyl-CoA carboxylase with in vitro and in vivo efficacy on fat oxidation. J. Med. Chem., 2010, 53, 8679-8687.
[16]
Freeman-Cook, K.D.; Amor, P.; Bader, S.; Buzon, L.M.; Coffey, S.B.; Corbett, J.W.; Dirico, K.J.; Doran, S.D.; Elliott, R.L.; Esler, W.; Guzman-Perez, A.; Henegar, K.E.; Houser, J.A.; Jones, C.S.; Limberakis, C.; Loomis, K.; McPherson, K.; Murdande, K.; Nelson, K.L.; Phillion, D.; Pierce, B.S.; Song, W.; Sugarman, E.; Tapley, S.; Tu, M.H.; Zhao, Z.R. Maximizing lipophilic efficiency: The use of free-wilson analysis in the design of inhibitors of acetyl-coa carboxylase. J. Med. Chem., 2012, 55, 935-942.
[17]
Griffith, D.A.; Dow, R.L.; Huard, K.; Edmonds, D.J.; Bagley, S.W.; Polivkova, J.; Zeng, D.X.; Garcia-Irizarry, C.N.; Southers, J.A.; Esler, W.; Amor, P.; Loomis, K.; McPherson, K.; Bahnck, K.B.; Preville, C.; Banks, T.; Moore, D.E.; Mathiowetz, A.M.; Menhaji-Klotz, E.; Smith, A.C.; Doran, S.D.; Beebe, D.A.; Dunn, M.F. Spirolactam-Based Acetyl-CoA carboxylase inhibitors: Toward improved metabolic stability of a chromanone lead structure. J. Med. Chem., 2013, 56, 7110-7119.
[18]
Bourbeau, M.P.; Bartberger, M.D. Recent advances in the development of Acetyl-CoA Carboxylase (ACC) inhibitors for the treatment of metabolic disease. J. Med. Chem., 2015, 58, 525-536.
[19]
Robert, U.S.; Parker, S.J.; Eichner, L.J.; Kolar, M.J.; Wallace, M.; Brun, S.N.; Lombardo, P.S.; Nostrand, J.L.V.; Hutchins, A.H.; Vera, L.; Gerken, L.; Greenwood, J.; Bhat, S.; Harriman, G.; Westlin, W.F.; Harwood, H.J.; Saghatelian, A.; Kapeller, R.; Metallo, C.M.; Shaw, R.J. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med., 2016, 22, 1108-1119.
[20]
Griffith, D.A.; Kung, D.W.; Esler, W.P.; Amor, P.A.; Bagley, S.W.; Beysen, C. Carvajal- Gonzalez, S.; Doran, S.D.; Limberakis, C.; Mathiowetz, A.M.; McPherson, K.; Price, D.A.; Ravussin, E.; Sonnenberg, G.E.; Southers, J.A.; Sweet, L.J.; Turner, S.M.; Vajdos, F.F. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical Acetyl- CoA carboxylase inhibitor for the treatment of diabetes. J. Med. Chem., 2014, 57, 10512-10526.
[21]
Zhuang, S.L.; Wang, H.F.; Ding, K.K.; Wang, J.Y.; Pan, L.M.; Lu, Y.L.; Liu, Q.J.; Zhang, C.L. Interactions of benzotriazole UV stabilizers with human serum albumin: Atomic insights revealed by biosensors, spectroscopies and molecular dynamics simulations. Chemosphere, 2016, 144, 1050-1059.
[22]
Gao, J.; Sun, J.; Wang, T.; Sheng, S.; Huang, T.H. Combined 3D-QSAR modeling and molecular docking study on spiro-derivatives as inhibitors of acetyl-CoA carboxylase. Med. Chem. Res., 2017, 26, 361-371.
[23]
Xiong, X.; Yuan, H.L.; Zhang, Y.M.; Xu, J.X.; Ran, T.; Liu, H.C.; Lu, S.; Xu, A.Y.; Li, H.M.; Jiang, Y.L.; Lu, T.; Chen, Y.D. Protein flexibility oriented virtual screening strategy for JAK2 inhibitors. J. Mol. Struct., 2015, 1097, 136-144.
[24]
Xia, X.Y.; Maliski, E.G.; Gallant, P.; Rogers, D. Classification of kinase inhibitors using a bayesian model. J. Med. Chem., 2004, 47, 4463-4470.
[25]
Rogers, D.; Brown, R.D.; Hahn, M. Using extended connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen., 2005, 10, 682-686.
[26]
Singh, N.; Chaudhury, S.; Liu, R.F. AbdulHameed, M.D.M.; Tawa, G.; Wallqvist, A. QSAR classification model for antibacterial compounds and its use in virtual screening. J. Chem. Inf. Model., 2012, 52, 2559-2569.
[27]
Prathipati, P.; Ma, N.L.; Keller, T.H. Global bayesian models for the prioritization of antitubercular agents. J. Chem. Inf. Model., 2008, 48, 2362-2370.
[28]
Fang, J.S.; Yang, R.Y.; Gao, L.; Zhou, D.; Yang, S.Q.; Liu, A.L.; Du, G.H. Predictions of BuChE inhibitors using support vector machine and naive bayesian classification techniques in drug discovery. J. Chem. Inf. Model., 2013, 53, 3009-3020.
[29]
Bourbeau, M.P.; Allen, J.G.; Gu, W. Recent advances in AcetylCoA carboxylase inhibitors. Annu. Rep. Med. Chem., 2012, 45, 95-108.
[30]
Vijayan, R.S.K.; Bera, I.; Prabu, M.; Saha, S.; Ghoshal, N. Combinatorial library enumeration and lead hopping using comparative interaction fingerprint analysis and classical 2D QSAR methods for seeking novel GABAA α3 modulators. J. Chem. Inf. Model., 2009, 49, 2498-2511.
[31]
Lipkus, A.H. A proof of the triangle inequality for the Tanimoto distance. J. Math. Chem., 1999, 26, 263-265.
[32]
Mpamhanga, C.P.; Chen, B.; McLay, I.M.; Willett, P. Knowledge based interaction fingerprint scoring: A simple method for improving the effectiveness of fast scoring functions. J. Chem. Inf. Model., 2006, 46, 686-698.
[33]
Marcou, G.; Rognan, D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model., 2006, 47, 195-207.
[34]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.