[1]
Chikhale, R.V.; Khedekar, P.B. Ultrasound assisted one-pot synthesis of some 1, 5-benzodiazepine derivatives. Curr. Catal., 2013, 2(2), 1-5.
[2]
Wang, L.Z.; Li, X.Q.; An, Y.S. 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure-activity relationships. Org. Biomol. Chem., 2015, 13(19), 5497-5509.
[3]
Bhat, I.; Kumar, A. Synthesis and anti-inflammatory activity of some novel 1,5 benzodiazepine derivatives. Asian J. Pharm. Clin. Res., 2016, 9(4), 63-66.
[4]
Pavlovsky, V.I.; Tsymbalyuk, O.V.; Martynyuk, V.S.; Kabanova, T.A.; Semenishyna, E.A.; Khalimova, E.I.; Andronati, S.A. Analgesic effects of 3- substituted derivatives of 1,4-benzodiazepines and their possible mechanisms. Neurophysiology, 2013, 45(5,6), 427-432.
[5]
Kamal, A.; Srikanth, Y.V.V.; Janaki Ramaiah, M. Khan. M.N.A.; Reddy, M.K.; Ashraf, Md.; Lavanya, A.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. Lett., 2012, 22(1), 571-578.
[6]
Pandeya, S.N.; Rajput, N. Synthesis and anticonvulsant activity of various Mannich and Schiff bases of 1,5-benzodiazepines. Int. J. Med. Chem., 2012, 2012, Article ID 237965.
[7]
Chinnasamy, G.; Subramani, K.; Srinivasan, V. Green synthesis, characterization and anxiolytic, sedative and hypnotic activity of pyrimidine based diazepine derivatives. Biomed. Res., 2017, 28(2), 525-531.
[8]
Sangshetti, J.N.; Chouthe, R.S.; Jadhav, M.R.; Sakle, N.S.; Chabukswar, A.; Gonjari, I.; Darandale, S.; Shinde, D.B. Green synthesis and anxiolytic activity of some new dibenz-[1,4] diazepine-1-one analogues. Arab. J. Chem., 2017, 10(1), 1356-1363.
[9]
Cheng, P.; Zhang, Q.; Ma, Y-B.; Jiang, Z-Y.; Zhang, X-M.; Zhang, F-X.; Chen, J-J. Synthesis and in vitro anti-hepatitis B virus activities of 4-aryl-6-chloro-quinolin-2-one and 5-aryl-7-chloro-1,4-benzodiazepine derivatives. Bioorg. Med. Chem. Lett., 2008, 18(13), 3787-3789.
[10]
Zhang, L.; Deng, X-S.; Meng, G-P.; Zhang, C.; Liu, C-C.; Chen, G-Z.; Jiang, X-L.; Zhao, Q-C.; Hu, C. Design, synthesis and biological evaluation of a novel series of indole-3-carboxamide derivatives for cancer treatment as EGFR inhibitors. Lett. Drug Des. Discov., 2018, 15(1), 70-83.
[11]
Schuck, D.C.; Jordao, A.K.; Nakabashi, M.; Cunha, A.C.; Ferreira, V.F.; Garcia, C.R. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite plasmodium falciparum. Eur. J. Med. Chem., 2014, 78, 375-382.
[12]
Olgen, S. Recent development of new substituted indole and azaindole derivatives as anti-HIV agents. Mini Rev. Med. Chem., 2013, 13(12), 1700-1708.
[13]
Hong, W.; Jingyang, L.; Chang, Z.; Tan, X.; Yang, H.; Ouyang, Y.; Yang, Y.; Kaur, S.; Paterson, I.C.; Ngeow, Y.F.; Wang, H. Synthesis and biological evaluation of indole core-based derivatives with potent antibacterial activity against resistant bacterial pathogens. J. Antibiot., 2017, 70, 832-844.
[14]
Atluntas, T.G.; Yilmaz, N.; Coban, T.; Olgen, S. Synthesis and antioxidant activity of indole derivatives containing 4-substituted piperazine moieties. Lett. Drug Des. Discov., 2017, 14(4), 380-386.
[15]
Thikekar, T.U.; Selvaraju, M.; Sun, C-M. Skeletally diverse synthesis of indole-fused diazocine and diazepine frameworks by one-pot, two-component cascade reaction. Org. Lett., 2016, 18(2), 316-319.
[16]
Biradar, J.S.; Somappa, S.B. Synthesis of novel indolyl benzo[b][1,4]diazepins as potent antimicrobial and antioxidant agents. Arab. J. Chem., 2016, 9(2), S1063-S1068.
[17]
Kharate, R.M.; Deohate, P.P.; Berad, B.N. Microwave assisted synthesis, characterization and antimicrobial study of substituted benzo-(5,6-e)-[1,3]-diazepine-4,7-dione derivatives. Chem. Sci. Trans., 2013, 2(1), 65-68.
[18]
Zhu, X-T.; Jia-Yan, Liu. J-Y.; Jiang, B.; Tu, S-J. Microwave-assisted aqueous reactions: An efficient route to benzodiazepines. J. Heterocyclic. Chem., 2015, 52(1), 92-96.
[19]
Chan, C-K.; Tsai, Y-L.; Chan, Y-L.; Chang, M-Y. Synthesis of substituted 2,3-benzodiazepines. J. Org. Chem., 2016, 81(20), 9836-9847.
[20]
Sibous, S.; Ghailane, T.; Houda, S.; Ghailane, R.; Boukhris, S.; Souizi, A. Green and efficient method for the synthesis of 1,5-benzodiazepines using phosphate fertilizers as catalysts under solvent-free conditions. Mediterr. J. Chem., 2017, 6(2), 53-59.
[21]
Polshettiwar, V.; Asefa, T. Eds., Introduction to Nanocatalysis. In: Nanocatalysis Synthesis and Applications, 1st ed; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1-9.
[22]
Sheldon, R.A.; Downing, R.S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A, 1999, 189(2), 163-183.
[23]
Cole-Hamilton, D.J. Homogeneous catalysis—New approaches to catalyst separation, recovery, and recycling. Science, 2003, 299(5613), 1702-1706.
[24]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Application of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[25]
Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S.M. Function of nanocatalyst in chemistry of organic compounds revolution: an overview. J. Nanomater., 2013, Article ID 341015.
[26]
Vellaisamy, K.; Li, G.; Ko, C-N.; Zhong, H-J.; Fatima, S.; Kwan, H-Y.; Wong, W-J.; Kwong, C-Y.; Tan, W.; Leung, C-H.; Ma, D-L. Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem. Sci., 2018, 9(5), 1119-1125.
[27]
Lu, L.; Chan, D.S-H.; Kwong, D.W.J.; He, H-Z.; Leung, C-H.; Ma, D-L. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem. Sci., 2014, 5(12), 4561-4568.
[28]
Burke, C.S.; Byrne, A.; Keyes, T.E. Targeting photoinduced DNA destruction by Ru(II) tetraazaphenanthrene in live cells by signal peptide. J. Am. Chem. Soc., 2018, 140(22), 6945-6955.
[29]
Boyle, K.M.; Barton, J.K. A family of rhodium complexes with selective toxicity toward mismatch repair-deficient cancers. J. Am. Chem. Soc., 2018, 140(16), 5612-5624.
[30]
Lin, S.; Wei, G.; Yang, C.; Lu, L.; Mergny, J-L.; Leung, C-H.; Ma, D-L. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem. Sci., 2015, 6(7), 4284-4290.
[31]
Liu, J-B.; Yang, C.; Ko, C-N.; Vellaisamy, K.; Yang, B.; Lee, M-Y.; Leung, C-H.; Ma, D-L. A long lifetime iridium(III) complex as a sensitive luminescent probe for bisulfite detection in living zebrafish. Sens. Actuators B Chem., 2017, 243, 971-976.
[32]
Jindakun, C.; Hsieh, S-Y.; Bode, J.W. Iridium-catalyzed synthesis of saturated N-heterocycles from aldehydes and SnAP reagents with continuous flow photochemistry. Org. Lett., 2018, 20(7), 2071-2075.
[33]
Chen, W-W.; Xu, M-H. Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles. Org. Biomol. Chem., 2017, 15(5), 1029-1050.
[34]
Wan, K.Y.; Roelfes, F.; Lough, A.J.; Hahn, F.E.; Morris, R.H. Iridium and rhodium complexes containing enantiopure primary amine-tethered N-heterocyclic carbenes: synthesis, characterization, reactivity, and catalytic asymmetric hydrogenation of ketones. Organometallics, 2018, 37(3), 491-504.
[35]
Selvaganapathy, M.; Raman, N. Pharmacological activity of anfew transition meta complexes: a rshort review. J. Chem. Biol. Ther., 2016, 1(2), 108.
[36]
Elhakim, H.K.A.; Azab, S.M.; Fekry, A.M. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. Mater. Sci. Eng. C, 2018, 92, 489-495.
[37]
Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Zeng, Z.; Wang, A.; Liu, G.; Cui, H. The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res. Lett., 2016, 11(1), 529.
[38]
Su, H.; Liu, D-D.; Zhao, M.; Hu, W-L.; Xue, S-S.; Cao, Q. Le, X-Y.; Ji, L-N.; Mao, Z-W. Dual-Enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces, 2015, 7(15), 8233-8242.
[39]
Moradi, L.; Tadayon, M. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J. Saudi Chem. Soc., 2018, 22, 66-75.
[40]
Rao, G.B.D.; Nagakalyanb, S.; Prasad, G.K. Solvent-free synthesis of polyhydroquinoline derivatives employing mesoporous vanadium ion doped titania nanoparticles as a robust heterogeneous catalyst via the Hantzsch reaction. RSC Adv, 2017, 7, 3611-3616.
[42]
Castro, L.; Blázquez, M.L.; Muñoz, J.A.; González, F.G.; Ballester, A. Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev. Adv. Sci. Eng., 2014, 3(3), 199-216.
[43]
Haghighi, M.; Nikoofar, K. Nano TiO2/SiO2: An efficient and reusable catalyst for the synthesis of oxindole derivatives. J. Saudi Chem. Soc., 2016, 20(1), 101-106.
[44]
Abdolmohammadi, S. Solvent-free synthesis of 4,5-dihydropyrano[c]chro-mene derivatives over TiO2 nanoparticles as an economical and efficient catalyst. Curr. Catal., 2013, 2(2), 116-121.
[45]
Bajpai, S.; Singh, S.; Srivastava, V. Multi phase nano-TiO2 as an effective heterogeneous catalyst for condensation reaction of isatin derivatives with 1,2-diaminobenzene under solvent free conditions: A greener “NOSE”approach. Arab. J. Chem., 2014, 2014, 1-8.
[46]
Bahramia, K.; Khodaeia, M.M.; Naalia, F. TiO2 nanoparticles catalysed synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles using hydrogen peroxide under ambient light. J. Exp. Nanosci., 2016, 11(2), 148-160.
[47]
Fatahpour, M.; Sadeh, F.M.; Hazeri, N.; Maghsoodlou, M.T.; Hadavi, M.S.; Mahnaei, S. Ag/TiO2 nano-thin films as robust heterogeneous catalyst for one-pot, multi-component synthesis of bis (pyrazol-5-ol) and dihydropyrano[2,3-c]pyrazole analogs. J. Saudi Chem. Soc., 2017, 21(8), 998-1006.
[48]
Vijayalakshmi, R.; Rajendran, K.V. Synthesis of Nano-TiO2 by Sol-Gel route: Effect of solvent and temperature on the optical properties. Int. J. Pure Appl. Phys., 2011, 7(1), 105-115.
[49]
Perumal, S.; Sambandam, C.G.; Prabu, K.M.; Ananthakumar, S. Synthesis and charecterization studies of nano TiO2 prepared via sol-gel method. Int. J. Res. Eng. Technol, 2014, 3(4), 651-657.
[50]
Ramazani, M.; Farahmandjou, M.; Firoozabadi, T.P. Effects of nitric acid on particle morphology of nano- TiO2. Int. J. Nanosci. Nanotechnol., 2015, 11(2), 115-122.
[51]
Phonkhokkong, T.; Thongtem, T.; Thongtem, S.; Phurvangrat, A.; Promnopas, W. Synthesis and characterization of TiO2 nanopowders for fabrication of dye sensitized solar cells. Dig. J. Nanomater. Bios., 2016, 11(1), 81-90.
[52]
Wongkaew, A.; Jansome, W.; Khemchan, S.; Sawaengmit, N.; Mitpapan, S. Synthesis of nanoparticles of mixed oxides containing titanium, cerium, silver and silicon: phase transformation. Energy Rec. J., 2010, 1(2), 73-77.
[53]
Cenovar, A.; Paunovic, P.; Grozdavov, A.; Makreski, P.; Fidancevska, E. Preparation of nano-crystalline TiO2by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. Adv. Nat. Sci.: Theory Appl, 2012, 1(2), 133-142.
[54]
Kalaivani, T.; Anilkumar, P. Role of temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation method. Silicon, 2018, 10(4), 1679-1686.
[55]
Avci, N.; Smet, F. Poelman, de Velde, N.V.; Buysser, K.D.; Driessche, I.V.; Poelman, D. Characterization of TiO2 powders and thin films prepared by non-aqueous sol-gel techniques. J. Sol-Gel Sci. Technol., 2009, 52, 424.