Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design and Synthesis of Novel Sulfonamide-Derived Triazoles and Bioactivity Exploration

Author(s): Shi-Chao He, Hui-Zhen Zhang*, Hai-Juan Zhang, Qing Sun and Cheng-He Zhou*

Volume 16, Issue 1, 2020

Page: [104 - 118] Pages: 15

DOI: 10.2174/1573406414666181106124852

Price: $65

Abstract

Objective: Due to the incidence of resistance, a series of sulfonamide-derived 1,2,4- triazoles were synthesized and evaluated.

Method: The novel sulfonamide-derived 1,2,4-triazoles were prepared starting from commercial acetaniline and chlorosulfonic acid by sulfonylation, aminolysis, N-alkylation and so on. The antimicrobial activity of the synthesized compounds were evaluated in vitro by two-fold serial dilution technique.

Results: In vitro antimicrobial evaluation found that 2-chlorobenzyl sulfonamide 1,2,4-triazole 7c exhibited excellent antibacterial activities against MRSA, B. subtilis, B. typhi and E. coli with MIC values of 0.02−0.16 μmol/mL, which were comparable or even better than Chloromycin. The preliminary mechanism suggested that compound 7c could effectively bind with DNA, and also it could bind with human microsomal heme through hydrogen bonds in molecular docking. Computational chemical studies were performed on compound 7c to understand the structural features that are essential for activity. Additionally, compound 7c could generate a small amount of reactive oxygen species (ROS).

Conclusion: Compound 7c could serve as a potential clinical antimicrobial candidate.

Keywords: Antibacterial, antifungal, antimicrobial agents, cytotoxicity, sulfonamides, triazole.

Graphical Abstract

[1]
Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6600-6626.
[http://dx.doi.org/10.1002/anie.201506818] [PMID: 27000559]
[2]
He, S.C.; Jeyakkumar, P.; Avula, S.R.; Wang, X.L.; Zhang, H.Z.; Zhou, C.H. Recent advance in sulfonamide-based medicinal chemistry. Sci. Sin. Chim., 2016, 46, 823-847.
[3]
Srivastava, N.; Kumar, A. Synthesis and study of 1-ethyl-3-carbohydrazide and 3-[1-oxo-2-hydrazino-3-p-toluenesulfon]quino-lone derivatives against bacterial infections. Eur. J. Med. Chem., 2013, 67, 464-468.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.056] [PMID: 23933534]
[4]
Lal, J.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Eur. J. Med. Chem., 2013, 64, 579-588.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.012] [PMID: 23685942]
[5]
Al-Ansary, G.H.; Ismail, M.A.H.; Abou El Ella, D.A.; Eid, S.; Abouzid, K.A.M. Molecular design and synthesis of HCV inhibitors based on thiazolone scaffold. Eur. J. Med. Chem., 2013, 68, 19-32.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.006] [PMID: 23933047]
[6]
Akurathi, V.; Dubois, L.; Celen, S.; Lieuwes, N.G.; Chitneni, S.K.; Cleynhens, B.J.; Innocenti, A.; Supuran, C.T.; Verbruggen, A.M.; Lambin, P.; Bormans, G.M. Development and biological evaluation of 99mTc-sulfonamide derivatives for in vivo visualization of CA IX as surrogate tumor hypoxia markers. Eur. J. Med. Chem., 2014, 71, 374-384.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.027] [PMID: 24378650]
[7]
Chandna, N.; Kumar, S.; Kaushik, P.; Kaushik, D.; Roy, S.K.; Gupta, G.K.; Jachak, S.M.; Kapoor, J.K.; Sharma, P.K. Synthesis of novel celecoxib analogues by bioisosteric replacement of sulfonamide as potent anti-inflammatory agents and cyclooxygenase inhibitors. Bioorg. Med. Chem., 2013, 21(15), 4581-4590.
[http://dx.doi.org/10.1016/j.bmc.2013.05.029] [PMID: 23769654]
[8]
Sławiński, J.; Szafrański, K.; Vullo, D.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of heterocyclic 4-substituted pyridine-3-sulfonamide derivatives and their inhibition of the human cytosolic isozymes I and II and transmembrane tumor-associated isozymes IX and XII. Eur. J. Med. Chem., 2013, 69, 701-710.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.027] [PMID: 24095761]
[9]
Vermelho, A.B.; Capaci, G.R.; Rodrigues, I.A.; Cardoso, V.S.; Mazotto, A.M.; Supuran, C.T. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets. Bioorg. Med. Chem., 2017, 25(5), 1543-1555.
[http://dx.doi.org/10.1016/j.bmc.2017.01.034] [PMID: 28161253]
[10]
Nunes, J.H.; de Paiva, R.E.; Cuin, A.; Lustri, W.R.; Corbi, P.P. Silver complexes with sulfathiazole and sulfamethoxazole: Synthesis, spectroscopic characterization, crystal structure and antibacterial assays. Polyhedron, 2015, 85, 437-444.
[http://dx.doi.org/10.1016/j.poly.2014.09.010]
[11]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[12]
Zhang, H.Z.; Jeyakkumar, P.; Kumar, K.V.; Zhou, C.H. Synthesis of novel sulfonamide azoles via C–N cleavage of sulfonamides by azole ring and relational antimicrobial study. New J. Chem., 2015, 39, 5776-5796.
[http://dx.doi.org/10.1039/C4NJ01932F]
[13]
Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[14]
Wang, X.L.; Gan, L.L.; Yan, C.Y.; Zhou, C.H. Synthesis and their evaluation for their antimicrobial activity of diphenyl piperazine-based sulfonamides. Sci. Sin. Chim, 2011, 41, 451-460.
[15]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2017, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[16]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[17]
Peng, X.M.; Peng, L.P.; Li, S.; Avula, S.R.; Kannekanti, V.K.; Zhang, S.L.; Tam, K.Y.; Zhou, C.H. Quinazolinone azolyl ethanols: potential lead antimicrobial agents with dual action modes targeting MRSA DNA. Future Med. Chem., 2016, 8, 1927-1940.
[http://dx.doi.org/10.4155/fmc-2016-0002] [PMID: 27668522]
[18]
Zhang, H.Z.; Damu, G.L.V.; Cai, G.X.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem., 2013, 64, 329-344.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.049] [PMID: 23644216]
[19]
Liu, Q.L.; Fang, P.J.; Zhao, Z.L.; Zhang, H.Z.; Zhou, C.H. Design, synthesis, and biological evaluation of novel sulfonamide 1,2,4-triazoles and their interaction with calf thymus DNA. Youji Huaxue, 2017, 37, 3146-3154.
[http://dx.doi.org/10.6023/cjoc201708010]
[20]
Fang, B.; Zhou, C.H.; Rao, X.C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(9), 4388-4398.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.012] [PMID: 20598399]
[21]
Jeyakkumar, P.; Liu, H.B.; Gopala, L.; Cheng, Y.; Peng, X.M.; Geng, R.X.; Zhou, C.H. Novel benzimidazolyl tetrahydroprotoberberines: Design, synthesis, antimicrobial evaluation and multi-targeting exploration. Bioorg. Med. Chem. Lett., 2017, 27(8), 1737-1743.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.071] [PMID: 28302402]
[22]
Addla, D.; Wen, S.Q.; Gao, W.W.; Maddili, S.K.; Zhang, L.; Zhou, C.H. Design, synthesis, and biological evaluation of novel carbazole aminothiazoles as potential DNA-targeting antimicrobial agents. MedChemComm, 2016, 7, 1988-1994.
[http://dx.doi.org/10.1039/C6MD00357E]
[23]
Wen, S.Q.; Jeyakkumar, P.; Avula, S.R.; Zhang, L.; Zhou, C.H. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg. Med. Chem. Lett., 2016, 26(12), 2768-2773.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.070] [PMID: 27156777]
[24]
National Committee for Clinical Laboratory Standards Approved standard Document. M27-A2, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; National Committee for Clinical Laboratory Standards: Wayne, PA, 2002.
[25]
Wen, Z.H.; Long, Y.J.; Yang, L.L.; Hu, J.G.; Huang, N.; Cheng, Y.; Zhao, L.; Zheng, H.Z. Constructing H+-triggered bubble generating nano-drug delivery systems using bicarbonate and carbonate. RSC Advances, 2016, 6, 105814-105820.
[http://dx.doi.org/10.1039/C6RA19863E]
[26]
Huang, L.; Terakawa, M.; Zhiyentayev, T.; Huang, Y.Y.; Sawayama, Y.; Jahnke, A.; Tegos, G.P.; Wharton, T.; Hamblin, M.R. Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials. Nanomedicine (Lond.), 2010, 6(3), 442-452.
[http://dx.doi.org/10.1016/j.nano.2009.10.005] [PMID: 19914400]
[27]
Hu, L.; Li, L.; Xu, D.; Xia, X.; Pi, R.; Xu, D.; Wang, W.; Du, H.; Song, E.; Song, Y. Protective effects of neohesperidin dihydrochalcone against carbon tetrachloride-induced oxidative damage in vivo and in vitro. Chem. Biol. Interact., 2014, 213, 51-59.
[http://dx.doi.org/10.1016/j.cbi.2014.02.003] [PMID: 24530446]
[28]
Park, S.E.; Sapkota, K.; Kim, S.; Kim, H.; Kim, S.J. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol., 2011, 164(3), 1008-1025.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01389.x] [PMID: 21449918]
[29]
Berdis, A.J. DNA polymerases as therapeutic targets. Biochemistry, 2008, 47(32), 8253-8260.
[http://dx.doi.org/10.1021/bi801179f] [PMID: 18642851]
[30]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[31]
Li, X.L.; Hu, Y.J.; Wang, H.; Yu, B.Q.; Yue, H.L. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 2012, 13(3), 873-880.
[http://dx.doi.org/10.1021/bm2017959] [PMID: 22316074]
[32]
Zhang, G.; Fu, P.; Wang, L.; Hu, M. Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. J. Agric. Food Chem., 2011, 59(16), 8944-8952.
[http://dx.doi.org/10.1021/jf2019006] [PMID: 21761894]
[33]
Pan, J.; Liu, G.Y.; Cheng, J.; Chen, X.J.; Ju, X.L. CoMFA and molecular docking studies of benzoxazoles and benzothiazoles as CYP450 1A1 inhibitors. Eur. J. Med. Chem., 2010, 45(3), 967-972.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.037] [PMID: 19969397]
[34]
Cheng, Y.; Avula, S.R.; Gao, W.W.; Addla, D.; Tangadanchu, V.K.R.; Zhang, L.; Lin, J.M.; Zhou, C.H. Multi-targeting exploration of new 2-aminothiazolyl quinolones: Synthesis, antimicrobial evaluation, interaction with DNA, combination with topoisomerase IV and penetrability into cells. Eur. J. Med. Chem., 2016, 124, 935-945.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.011] [PMID: 27769037]
[35]
Lv, J.S.; Peng, X.M.; Kishore, B.; Zhou, C.H. 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorg. Med. Chem. Lett., 2014, 24(1), 308-313.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.013] [PMID: 24295786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy