[2]
Bandara, H.M.H.N.; Harb, A.; Kolacny, D.; Martins, P.; Smyth, H.D.C. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro. AAPS PharmSciTech, 2014, 15, 1644-1654.
[3]
Thiyagarajan, M. Portable plasma medical device for infection
treatment and wound healing. In: ASME 2011 6th Frontiers in Biomedical
Devices Conference, American Society of Mechanical Engineers,
30-32,. 2011.
[5]
Leszczynski, D.; Joenväärä, S.; Reivinen, J.; Kuokka, R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation, 2002, 70, 120-129.
[6]
Regel, S.J.; Achermann, P. Cognitive performance measures in bioelectromagnetic research critical evaluation and recommendations. Environ. Health, 2011, 10(1), 10.
[7]
Kadam, V.V.; Nayak, R. Basics of acoustic science' in R Padhye, R
Nayak (ed.) Acoustic Textiles, Springer, Singapore. , 2016; p. 33-42.
[8]
Ying, J.C.L.; Dayou, J.; Phin, C.K. Experimental investigation on the effects of audible sound to the growth of Escherichia coli. Mod. Appl. Sci., 2009, 3, 124.
[9]
Shaobin, G.; Wu, Y.; Li, K.; Li, S.; Ma, S.; Wang, Q.; Wang, R. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids Surf. B Biointerfaces, 2010, 78, 367-371.
[10]
Aggio, R.B.M.; Obolonkin, V.; Villas-Bôas, S.G. Sonic vibration affects the metabolism of yeast cells growing in liquid culture: A metabolomic study. Metabolomics, 2012, 8, 670-678.
[11]
Kim, H.W. The effects of low frequency noise on the growth and resistance to antibiotics of soil bacteria and E. coli. APEC Youth Scientist J., 2016, 8, 1-10.
[12]
Liu, S.L.; Wu, W.J.; Yung, P.T. Effect of sonic stimulation on Bacillus endospore germination. FEMS Microbiol. Lett., 2016, 363(1)fnv217
[13]
Murphy, M.F.; Edwards, T.; Hobbs, G.; Shepherd, J.; Bezombes, F. Acoustic vibration can enhance bacterial biofilm formation. J. Biosci. Bioeng., 2016, 122, 765-770.
[14]
Kushwah, P.; Mishra, T.; Kothari, V. Effect of microwave radiation on growth, enzyme activity (amylase and pectinase), and/or exopolysaccharide production in Bacillus subtilis, Streptococcus mutans, Xanthomonas campestris and Pectobacterium carotovora. Br. Microbiol. Res. J., 2013, 3, 645-653.
[15]
Mishra, T.; Kushwah, P.; Kothari, V. Effect of low power microwave on bacterial growth, protein synthesis, and intracellular enzyme (glucose-6-phosphatase and β-galactosidase) activity. Biochem. Mol. Biol., 2013, 1, 27-33.
[16]
Dholiya, K.; Patel, D.; Kothari, V. Effect of low power microwave on microbial growth, enzyme activity, and aflatoxin production. Res. Biotechnol, 2012, 3(4), 28-34.
[17]
Ramanuj, K.; Bachani, P.; Kothari, V. In vitro antimicrobial activity of certain plant products/seed extracts against multidrug resistant Propionibacterium acnes, Malassezia furfur, and aflatoxin producing Aspergillus flavus. Res. Pharm., 2012, 2(3), 22-31.
[18]
Chaudhari, V.; Gosai, H.; Raval, S.; Kothari, V. Effect of certain natural products and organic solvents on quorum sensing in Chromobacterium violaceum. Asian Pac. J. Trop. Dis., 2014, 7, S204-S211.
[19]
Sarvaiya, N.; Kothari, V. Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiol., 2015, 84, 227-235.
[20]
Shah, A.; Raval, A.; Kothari, V. Sound stimulation can influence microbial growth and production of certain key metabolites. J. Microbiol. Biotechnol. Food Sci., 2016, 5, 330.
[21]
Sarvaiya, N.; Kothari, V. Audible sound in form of music can influence microbial growth, metabolism and antibiotic susceptibility. J. Appl. Biotechnol. Bioeng., 2017, 2, 00048.
[22]
Kothari, V.; Sharma, S.; Padia, D. Recent research advances on Chromobacterium violaceum. Asian Pac. J. Trop. Dis., 2017, 10, 744-752.
[24]
Gosai, H.; Raval, S.; Chaudhari, V.; Kothari, V. Microwave mutagenesis for altered lactic acid production in Lactobacillus plantarum, and Streptococcus mutans. Curr. Trends Biotechnol. Pharm., 2014, 8, 402-412.
[25]
Kothari, V.; Mishra, T.; Kushwah, P. Mutagenic effect of microwave radiation on exopolysaccharide production in Xanthomonas campestris. Curr. Trends Biotechnol. Pharm., 2014, 8, 29-37.
[26]
Qiao, Y.; Wu, M.; Feng, Y.; Zhou, Z.; Chen, L.; Chen, F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci. Rep., 2018, 8, 1597.
[27]
Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Kinnunen, E. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord., 2015, 30, 350-358.
[28]
Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Y.B.; Mironova, Y.S. Analysis of gut microbiota in patients with parkinson’s disease. Bull. Exp. Biol. Med., 2017, 162, 734-737.
[29]
Picard, C.; Fioramonti, J.; Francois, A.; Robinson, T.; Neant, F.; Matuchansky, C. bifidobacteria as probiotic agents-physiological effects and clinical benefits. Aliment. Pharmacol. Ther., 2005, 22, 495-512.
[30]
Ku, S.; Park, M.S.; Ji, G.E.; You, H.J. Review on Bifidobacterium bifidum bgn4: Functionality and nutraceutical applications as a probiotic microorganism. Int. J. Mol. Sci., 2016, 17, 1544.
[31]
Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci., 2016, 39, 763-781.
[32]
Könönen, E. Pigmented Prevotella species in the periodontally healthy oral cavity. FEMS Immunol. Med. Microbiol., 1993, 6, 201-205.
[33]
Gurjar, A.A.; Ladhake, S.A. Analysis and dissection of sanskrit divine sound “om” using digital signal processing to study the science behind “OM” chanting. 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 2016.
[34]
Kothari, V.; Patel, P.; Joshi, C.; Mishra, B.; Dubey, S.; Mehta, M. Quorum sensing modulatory effect of sound stimulation on Serratia marcescens and Pseudomonas aeruginosa. Curr. Trends Biotechnol. Pharm., 2016, 11, 121-128.
[35]
Liu, G.Y.; Nizet, V. Color me bad: Microbial pigments as virulence factors. Trends Microbiol., 2009, 17, 406-413.
[36]
Lapenda, J.C.; Silva, P.A.; Vicalvi, M.C.; Sena, K.X.F.R.; Nascimento, S.C. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J. Microbiol. Biotechnol., 2015, 31, 399-406.
[37]
Hosokawa, K.; Soliev, A.B.; Kajihara, A.; Enomoto, K. Effects of a microbial pigment violacein on the activities of protein kinases. Cogent Biol., 2016, 21259863
[38]
Holm, A.; Vikstrom, E. Quorum sensing communication between bacteria and human cells: Signals, targets, and functions. Front. Plant Sci., 2014, 5, 309.
[39]
de Vasconcelos, A.T.R.; De Almeida, D.F.; Hungria, M.; Guimarães, C.T.; Antônio, R.V.; Almeida, F.C.; Araripe, J. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. USA, 2003, 100, 11660-11665.
[40]
Haddix, P.L.; Jones, S.; Patel, P.; Burnham, S.; Knights, K.; Powell, J.N.; LaForm, A. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens. J. Bacteriol., 2008, 190, 7453-7463.
[41]
Choi, S.Y.; Yoon, K.H.; Lee, J.I.; Mitchell, R.J. Violacein: Properties and production of a versatile bacterial pigment. BioMed Res. Int., 2015, 2015, 1-8.
[42]
Francisco, R.; Pérez-Tomás, R.; Gimènez-Bonafé, P.; Soto-Cerrato, V.; Giménez-Xavier, P.; Ambrosio, S. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur. J. Pharmacol., 2007, 572, 111-119.
[43]
Dalili, D.; Fouladdel, S.; Rastkari, N.; Samadi, N.; Ahmadkhaniha, R.; Ardavan, A.; Azizi, E. Prodigiosin, the red pigment of Serratia marcescens, shows cytotoxic effects and apoptosis induction in HT-29 and T47D cancer cell lines. Nat. Prod. Res., 2012, 26, 2078-2083.
[44]
Ibsen, S.; Tong, A.; Schutt, C.; Esener, S.; Chalasani, S.H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun., 2015, 6, 1-12.
[45]
Matsuhashi, M.; Pankrushina, A.N.; Takeuchi, S.; Ohshima, H.; Miyoi, H.; Endoh, K.; Mano, Y. Production of sound waves by bacterial cells and the response of bacterial cells to sound. J. Gen. Appl. Microbiol., 1998, 44, 49-55.
[46]
Gu, S.B.; Yang, B.; Wu, Y.; Li, S.C.; Liu, W.; Duan, X.F.; Li, M.W. Growth and physiological characteristics of E. coli in response to the exposure of sound field. Pak. J. Biol. Sci., 2013, 16, 969-975.
[48]
Natrah, F.M.I.; Ruwandeepika, H.D.; Pawar, S.; Karunasagar, I.; Sorgeloos, P.; Bossier, P.; Defoirdt, T. Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet. Microbiol., 2011, 154, 124-129.
[49]
Joshi, C.; Patel, P.; Singh, A.; Sukhadiya, J.; Shah, V.; Kothari, V. Frequency-dependent response of Chromobacterium violaceum to sonic stimulation and altered gene expression associated with enhanced violacein production at 300 Hz. Curr. Sci., 2018, 115, 83-90.
[50]
Song, Y.; Liu, C.; Lin, F.Y.; No, J.H.; Hensler, M.; Liu, Y.; Jeng, W.; Low, J.; Liu, G.Y.; Nizet, V.; Wang, H-J.; Oldfield, E. Inhibition of Staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: In vitro, in vivo, and crystallographic results. J. Med. Chem., 2009, 52, 3869-3880.
[51]
El-Fouly, M.Z.; Sharaf, A.M.; Shahin, A.M.; El-Bialy, H.A.; Omara, A.M.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci., 2015, 8, 36-48.
[52]
Unni, K.; Priji, P.; Geoffroy, V.; Doble, M.; Benjamin, S. Pseudomonas aeruginosa BUP2-A novel strain isolated from malabari goat produces Type 2 pyoverdine. Adv. Biosci. Biotechnol., 2014, 5, 874-885.
[53]
Dreyfuss, M.S.; Chipley, J.R. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microbiol., 1980, 39, 13-16.
[54]
Copty, A.B.; Neve-Oz, Y.; Barak, I.; Golosovsky, M.; Davidov, D. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys. J., 2006, 91, 1413-1423.
[55]
Carta, R.; Desogus, F. The effect of low-power microwaves on the growth of bacterial populations in a plug flow reactor. AIChE J., 2010, 56, 1270-1278.
[56]
Morent, R.; De Geyter, N. Inactivation of bacteria by non-thermal
plasmas. In: Biomedical Engineering-Frontiers and Challenges, 2013, InTech.
[59]
Boyd-Brewer, C.; McCaffrey, R. Vibroacoustic sound therapy improves pain management and more. Holist. Nurs. Pract., 2004, 18, 111-118.
[61]
Lestard, N.R.; Valente, R.C.; Lopes, A.G.; Capella, M.A.M. Direct effects of music in non-auditory cells in culture. Noise Health, 2013, 15(66), 307-314.
[62]
Chisholm, A.D.; Xu, S. The Caenorhabditis elegans epidermis as a model skin. II: Differentiation and physiological roles. Wiley Interdiscip. Rev. Dev. Biol., 2012, 1, 879-902.