Review Article

基于药物重新定位的化学诱导细胞系表达数据的综述

卷 27, 期 32, 2020

页: [5340 - 5350] 页: 11

弟呕挨: 10.2174/0929867325666181101115801

价格: $65

摘要

药物重新定位是生物医学研究的重要领域。 药物重新定位研究已转向计算方法。 大规模扰动数据库,例如连接图和基于网络的集成细胞签名库,包含许多化学诱导的基因表达谱,并为计算生物学和药物重新定位提供了巨大的机会。 原因之一是,“连接图”和基于“基于网络的集成网络签名库”数据库提供的配置文件显示了药物,疾病和基因中生物学机制的整体视图。 在本文中,我们将对这两个数据库及其在药物重新定位中的最新应用进行综述。

关键词: 药物重新定位,计算生物学,生物信息学,候选药物,连接图,基于网络的集成细胞签名库。

[1]
Emmert-Streib, F.; Tripathi, S.; Simoes, R.D.M.; Hawwa, A.F.; Dehmer, M. The human disease network: Opportuni-ties for classification, diagnosis, and prediction of disorders and disease genes. Syst. Biomed., 2013, 1(1), 20-28.
[http://dx.doi.org/10.4161/sysb.22816]
[2]
Shameer, K.; Readhead, B.; Dudley, J.T. Computational and experimental advances in drug repositioning for accelerated therapeutic stratification. Curr. Top. Med. Chem., 2015, 15(1), 5-20.
[http://dx.doi.org/10.2174/1568026615666150112103510] [PMID: 25579574]
[3]
Boolell, M.; Allen, M.J.; Ballard, S.A.; Gepi-Attee, S.; Muirhead, G.J.; Naylor, A.M.; Osterloh, I.H.; Gingell, C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 1996, 8(2), 47-52.
[PMID: 8858389]
[4]
Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational drug repositioning. Brief. Bioinform., 2016, 17(1), 2-12.
[http://dx.doi.org/10.1093/bib/bbv020] [PMID: 25832646]
[5]
Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr. Top. Med. Chem., 2013, 13(18), 2337-2363.
[http://dx.doi.org/10.2174/15680266113136660164] [PMID: 24059461]
[6]
Chen, L.; Zou, B.; Lee, V.H.; Yan, H. Analysis of the relative movements between EGFR and drug inhibitors based on molecular dynamics simulation. Curr. Bioinform., 2018, 13(3), 299-309.
[http://dx.doi.org/10.2174/1574893612666171006155855]
[7]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: therapeutic target data-base. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[8]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[9]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Has-sanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic acids research., 2006, 34(1), D668-D672.
[10]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[11]
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput. Biol., 2012, 8(5), e1002503.
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[12]
Chen, L.; Chu, C.; Zhang, Y.H.; Zheng, M.; Zhu, L.; Kong, X.; Huang, T. Identification of drug-drug interactions using chemical interactions. Curr. Bioinform., 2017, 12(6), 526-534.
[http://dx.doi.org/10.2174/1574893611666160618094219]
[13]
Wu, H.; Huang, J.; Zhong, Y.; Huang, Q. DrugSig: A resource for computational drug repositioning utilizing gene expression signatures. PLoS One, 2017, 12(5), e0177743.
[http://dx.doi.org/10.1371/journal.pone.0177743] [PMID: 28562632]
[14]
Tang, W.; Wan, S.; Yang, Z.; Teschendorff, A.E.; Zou, Q. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics, 2018, 34(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/btx622] [PMID: 29028927]
[15]
Zeng, X.; Liu, L.; Lü, L.; Zou, Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics, 2018, 34(14), 2425-2432.
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[16]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[17]
Wen, Q.; O’Reilly, P.; Dunne, P.D.; Lawler, M.; Van Schaeybroeck, S.; Salto-Tellez, M.; Hamilton, P.; Zhang, S.D. Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies. BMC Syst. Biol., 2015, 9(Suppl. 5), S4.
[http://dx.doi.org/10.1186/1752-0509-9-S5-S4] [PMID: 26356760]
[18]
National Institutes of Health The library of integrated network-based cellular signatures. Project. Available at:, http://www.lincsproject.org (Accessed Date: 3rd March, 2017)
[19]
National center for biotechnology information search database. Available at: https://www.ncbi.nlm.nih.gov (Accessed Date: 6th April 2017)
[20]
Musa, A.; Ghoraie, L.S.; Zhang, S.D.; Glazko, G.; Yli-Harja, O.; Dehmer, M.; Haibe-Kains, B.; Emmert-Streib, F. A review of connectivity map and computational approaches in pharmacogenomics. Brief. Bioinform., 2017, 18(5), 903.
[http://dx.doi.org/10.1093/bib/bbx023] [PMID: 28334173]
[21]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[22]
Zhang, S.D.; Gant, T.W. sscMap: an extensible Java application for connecting small-molecule drugs using gene-expression signatures. BMC Bioinformatics, 2009, 10(1), 236.
[http://dx.doi.org/10.1186/1471-2105-10-236] [PMID: 19646231]
[23]
Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; Lahr, D.L.; Hirschman, J.E.; Liu, Z. Do-nahue, M.; Julian, B.; Khan, M.; Wadden, D.; Smith, I.; Lam, D.; Liberzon, A.; Toder, C.; Bagul, M.; Orzechowski, M.; Enache, O. M.; Piccioni, F.; Berger, A. H.; Shamji, A.; Brooks, A. N.; Vrcic, A.; Flynn, C.; Rosains, J.; Takeda, D.; Davison, D.; Lamb, J.; Ardlie, K.; Hogstrom, L.; Gray, N. S.; Clemons, P. A.; Silver, S.; Wu, X.; Zhao, W.; Read-Button, W.; Wu, X.; Haggarty, S. J.; Ronco, L. V.; Boehm, J. S.; Schreiber, S. L.; Doench, J. G.; Bittker, Joshua A.; Root, David E.; Wong, Bang; Golub, Todd R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 2017, 171(6), 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[24]
Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 2002, 30(1), 207-210.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[25]
Temesi, G.; Bolgár, B.; Arany, A.; Szalai, C.; Antal, P.; Mátyus, P. Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy. Future Med. Chem., 2014, 6(5), 563-575.
[http://dx.doi.org/10.4155/fmc.14.4] [PMID: 24649958]
[26]
Goss, K.L.; Gordon, D.J. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma. Oncotarget, 2016, 7(39), 63003-63019.
[http://dx.doi.org/10.18632/oncotarget.11416] [PMID: 27557498]
[27]
Pessetto, Z.Y.; Chen, B.; Alturkmani, H.; Hyter, S.; Flynn, C.A.; Baltezor, M.; Ma, Y.; Rosenthal, H.G.; Neville, K.A.; Weir, S.J.; Butte, A.J.; Godwin, A.K. In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma. Oncotarget, 2017, 8(3), 4079-4095.
[http://dx.doi.org/10.18632/oncotarget.13385] [PMID: 27863422]
[28]
Lee, J.; Liu, J.; Feng, X.; Salazar Hernández, M.A.; Mucka, P.; Ibi, D.; Choi, J.W.; Ozcan, U. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat. Med., 2016, 22(9), 1023-1032.
[http://dx.doi.org/10.1038/nm.4145] [PMID: 27479085]
[29]
Segura-Cabrera, A.; Tripathi, R.; Zhang, X.; Gui, L.; Chou, T.F.; Komurov, K. A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase. Sci. Rep., 2017, 7, 44912.
[http://dx.doi.org/10.1038/srep44912] [PMID: 28322292]
[30]
Chandran, V.; Coppola, G.; Nawabi, H.; Omura, T.; Versano, R.; Huebner, E.A.; Zhang, A.; Costigan, M.; Yekkirala, A.; Barrett, L.; Blesch, A.; Michaelevski, I.; Davis-Turak, J.; Gao, F.; Langfelder, P.; Horvath, S.; He, Z.; Benowitz, L.; Fainzilber, M.; Tuszynski, M.; Woolf, C.J.; Geschwind, D.H. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron, 2016, 89(5), 956-970.
[http://dx.doi.org/10.1016/j.neuron.2016.01.034] [PMID: 26898779]
[31]
Xiao, Z.X.; Chen, R.Q.; Hu, D.X.; Xie, X.Q.; Yu, S.B.; Chen, X.Q. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme. Biochem. Biophys. Res. Commun., 2017, 488(1), 33-39.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.157] [PMID: 28476618]
[32]
Li, L.; Greene, I.; Readhead, B.; Menon, M.C.; Kidd, B.A.; Uzilov, A.V.; Wei, C.; Philippe, N.; Schroppel, B.; He, J.C.; Chen, R.; Dudley, J.T.; Murphy, B. Novel therapeutics identification for fibrosis in renal allograft using integrative informatics approach. Sci. Rep., 2017, 7, 39487.
[http://dx.doi.org/10.1038/srep39487] [PMID: 28051114]
[33]
Won, S.J.; Yen, C.H.; Hsieh, H.W.; Chang, S.W.; Lin, C.N.; Huang, C.Y.F.; Su, C.L. Using connectivity map to identify natural lignan justicidin A as a NF-κB suppressor. J. Funct. Foods, 2017, 34, 68-76.
[http://dx.doi.org/10.1016/j.jff.2017.04.017]
[34]
Iorio, F.; Saez-Rodriguez, J.; di Bernardo, D. Network based elucidation of drug response: from modulators to targets. BMC Syst. Biol., 2013, 7(1), 139.
[http://dx.doi.org/10.1186/1752-0509-7-139] [PMID: 24330611]
[35]
Chen, J.; Schlitzer, A.; Chakarov, S.; Ginhoux, F.; Poiding-er, M. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nat. Commun., 2016, 7, 11988.
[PMID: 27356503]
[36]
Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 2014, 32(4), 381-386.
[http://dx.doi.org/10.1038/nbt.2859] [PMID: 24658644]
[37]
Zickenrott, S.; Angarica, V.E.; Upadhyaya, B.B.; del Sol, A. Prediction of disease-gene-drug relationships following a differential network analysis. Cell Death Dis., 2016, 7(1), e2040.
[http://dx.doi.org/10.1038/cddis.2015.393] [PMID: 26775695]
[38]
Liu, X.; Zeng, P.; Cui, Q.; Zhou, Y. Comparative analysis of genes frequently regulated by drugs based on connectivity map transcriptome data. PLoS One, 2017, 12(6), e0179037.
[http://dx.doi.org/10.1371/journal.pone.0179037] [PMID: 28575118]
[39]
Grammer, A.C.; Ryals, M.M.; Heuer, S.E.; Robl, R.D.; Madamanchi, S.; Davis, L.S.; Lauwerys, B.; Catalina, M.D.; Lipsky, P.E. Drug repositioning in SLE: crowd-sourcing, literature-mining and Big Data analysis. Lupus, 2016, 25(10), 1150-1170.
[http://dx.doi.org/10.1177/0961203316657437] [PMID: 27497259]
[40]
Siavelis, J.C.; Bourdakou, M.M.; Athanasiadis, E.I.; Spyrou, G.M.; Nikita, K.S. Bioinformatics methods in drug repurposing for Alzheimer’s disease. Brief. Bioinform., 2016, 17(2), 322-335.
[http://dx.doi.org/10.1093/bib/bbv048] [PMID: 26197808]
[41]
Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med., 2011, 3(96), 96ra77.
[http://dx.doi.org/10.1126/scitranslmed.3001318] [PMID: 21849665]
[42]
Kidd, B.A.; Wroblewska, A.; Boland, M.R.; Agudo, J.; Merad, M.; Tatonetti, N.P.; Brown, B.D.; Dudley, J.T. Mapping the effects of drugs on the immune system. Nat. Biotechnol., 2016, 34(1), 47-54.
[http://dx.doi.org/10.1038/nbt.3367] [PMID: 26619012]
[43]
Ryan, N.; Chorley, B.; Tice, R.R.; Judson, R.; Corton, J.C. Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor α modulation in a microarray compendium. Toxicol. Sci., 2016, 151(1), 88-103.
[http://dx.doi.org/10.1093/toxsci/kfw026] [PMID: 26865669]
[44]
Fang, H.Y.; Zeng, H.W.; Lin, L.M.; Chen, X.; Shen, X.N.; Fu, P.; Lv, C.; Liu, Q.; Liu, R.H.; Zhang, W.D.; Zhao, J. A network-based method for mechanistic investigation of Shexiang Baoxin Pill’s treatment of cardiovascular diseases. Sci. Rep., 2017, 7, 43632.
[http://dx.doi.org/10.1038/srep43632] [PMID: 28272527]
[45]
Chen, B.; Wei, W.; Ma, L.; Yang, B.; Gill, R.M.; Chua, M.S.; Butte, A.J.; So, S. Computational Discovery of Ni- closamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Gastroenterology, 2017, 152(8), 2022-2036.
[http://dx.doi.org/10.1093/nar/gkq1126 10.1053/j.gastro.2017.02.039] [PMID: 28284560]
[46]
Zhang, X.; Li, L.; Ng, M.K.; Zhang, S. Drug-target Interac-tion Prediction by Integrating Multiview Network Data. Comput. Biol. Chem., 2017.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.011]
[47]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic acids research., 2010, 39(1), D1035-D1041.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy