[1]
Vafajoo A, Rostami A, Parsa SF, et al. Multiplexed microarrays based on optically encoded microbeads. Biomed Microdevices 2018; 20(3): 66.
[4]
Vafajoo A, Rostami A, Parsa SF, et al. Early diagnosis of disease using microbead array technology: A review. Anal Chim Acta 2018; 1032: 1-17.
[5]
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 2018; 117: 112-28.
[6]
Ghasemi A, Rabiee N, Ahmadi S, et al. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143(14): 3249-83.
[8]
Ansari AM, Bhat KG, Dsa SS, Mahalingam S, Joseph N. Study of Insulin Resistance in Patients With β Thalassemia Major and Validity of Triglyceride Glucose (TYG) Index. J Pediatr Hematol Oncol 2018; 40(2): 128-31.
[9]
Deb A, Sambamoorthi U, Thornton JD, Schreurs B, Innes K. Direct medical expenditures associated with Alzheimer’s and related dementias (ADRD) in a nationally representative sample of older adults–an excess cost approach. Aging Ment Health 2018; 22(5): 619-24.
[10]
Maciejewski ML, Mi X, Sussman J, et al. Overtreatment and deintensification of diabetic therapy among medicare beneficiaries. J Gen Intern Med 2018; 33(1): 34-41.
[11]
Pruzin J, Nelson P, Abner E, Arvanitakis Z. Relationship of type 2 diabetes to human brain pathology. Neuropathol Appl Neurobiol 2018; 44(4): 347-62.
[12]
Ahmad RMAH. Thinking about brain insulin resistance. Diabetes Metab Syndr 2018; 12(6): 1091-4.
[13]
MA APC.Alzheimer’s disease and dementia impacted by diabetes. Optometry Times 2018; 10(5): 14.
[14]
Rivera-Mancía S, Trujillo J, Chaverri JP. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. JNIM 2018; 14: 29-41.
[15]
Thorpe CT, Gellad WF, Good CB, et al. Tight glycemic control and use of hypoglycemic medications in older veterans with type 2 diabetes and comorbid dementia. Diabetes Care 2015; 38(4): 588-95.
[16]
Talan J. Medicare data show one in ten hospitalizations for alzheimer’s patients could have been avoided. Neurol Today 2016; 16(15): 1-31.
[17]
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14(3): 168.
[18]
Frölich L, Blum-Degen D, Bernstein H-G, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 1998; 105(4-5): 423-38.
[19]
Steen E, Terry BMJ, Rivera E, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63-80.
[20]
Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 2005; 8(3): 247-68.
[21]
de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005; 7(1): 45-61.
[22]
Snyder HM, Corriveau RA, Craft S, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement 2015; 11(6): 710-7.
[23]
Emmerzaal TL, Kiliaan AJ, Gustafson DR. 2003-2013: a decade of body mass index, Alzheimer’s disease, and dementia. J Alzheimers Dis 2015; 43(3): 739-55.
[24]
Cheng H, Wang L, Shi T, Shang Y, Jiang L. Association of insulin degrading enzyme gene polymorphisms with Alzheimer’s disease: a meta-analysis. Int J Neurosci 2015; 125(5): 328-35.
[25]
Arnoldussen IA, Sundh V, Bäckman K, et al. A 10-year follow-up
of adiposity and dementia in swedish adults aged 70 years and
older. J Alzheimers Dis 2018. (Preprint): 1-11.
[26]
Pistollato F, Ohayon EL, Lam A, et al. Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget 2016; 7(26): 38999.
[27]
Baudrand R, Pojoga LH, Vaidya A, et al. Statin use and adrenal aldosterone production in hypertensive and diabetic subjects. Circulation 2015; 132(19): 1825-33.
[28]
Mittermayer F, Caveney E, De Oliveira C, et al. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr Diabetes Rev 2015; 11(1): 17-31.
[29]
Depetris RS, Hu J, Gimpelevich I, Holt LJ, Daly RJ, Hubbard SR. Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Molecular Cell 2005; 20(2): 325-33.
[30]
Song R, Peng W, Zhang Y, et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 2013; 494(7437): 375.
[31]
Bettaieb A, Prieto MAV, Lanzi CR, et al. (−)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radic Biol Med 2014; 72: 247-56.
[32]
Prajapati B, Kumar Jena P, Rajput P, Purandhar K, Seshadri S. Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev 2014; 10(3): 190-200.
[33]
Niwas Jangir R, Chand Jain G. Diabetes mellitus induced impairment of male reproductive functions: a review. Curr Diabetes Rev 2014; 10(3): 147-57.
[34]
Copps KD, Hançer NJ, Qiu W, White MF. Serine 302 phosphorylation of mouse insulin receptor substrate 1 (IRS1) is dispensable for normal insulin signaling and feedback regulation by hepatic S6 kinase. J Biol Chem 2016; 291(16): 8602-17.
[35]
Sajan M, Hansen B, Ivey R, et al. Brain insulin signaling is increased in insulin-resistant states and decreases in FoxOs and PGC-1α and increases in Aβ1-40.42 and Phospho-Tau may abet alzheimer development. Diabetes 2016; 65(7): 1892-903.
[36]
De Felice FG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 2014; 63(7): 2262-72.
[37]
Talbot K, Wang H-Y, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012; 122(4): 1316-38.
[38]
M de la Monte S. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9(1): 35-66.
[39]
De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 2014; 10(1): S26-32.
[40]
Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 2007; 4(2): 147-52.
[41]
Suzanne M. Insulin resistance and Alzheimer’s disease. BMB Rep 2009; 42(8): 475.
[42]
Craft S, Rhoads K. Insulin resistance syndrome and Alzheimer’s disease Insulin Resistance Syndrome and Neuropsychiatric Disease. CRC Press 2016; pp. 104-18.
[43]
Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004; 3(3): 169-78.
[44]
Yarchoan M, Arnold SE. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 2014; 63(7): 2253-61.
[45]
Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 2011; 68(1): 51-7.
[46]
Schubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci 2004; 101(9): 3100-5.
[47]
Bingham EM, Hopkins D, Smith D, et al. The role of insulin in human brain glucose metabolism: An 18fluoro-deoxyglucose positron emission tomography study. Diabetes 2002; 51(12): 3384-90.
[48]
Abolhassani N, Leon J, Sheng Z, et al. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain. Mech Ageing Dev 2017; 161: 95-104.
[49]
Neth BJ, Craft S. Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front Aging Neurosci 2017; 9: 345.
[50]
Folch J, Ettcheto M, Busquets O, et al. The implication of the brain insulin receptor in late onset alzheimer’s disease dementia. Pharmaceuticals 2018; 11(1): 11.
[51]
Pomytkin I, Costa‐Nunes JP, Kasatkin V, et al. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24(9): 763-74.
[52]
Pardeshi R, Bolshette N, Gadhave K, et al. Insulin signaling: An opportunistic target to minify the risk of Alzheimer’s disease. Psychoneuroendocrinol 2017; 83: 159-71.
[53]
Kaushal S, Chopra S, Arora S. Molecules of the millennium-exenatide: An incretin-mimetic agent. Indian J Pharmacol 2008; 38(1): 76-8.
[54]
Bedell SE. Safe medication use in the older adult. Arch Intern Med 2000; 160: 2129-34.
[55]
Li H, Ren Y, Mao K, et al. FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun 2018; 498(1): 234-9.
[56]
Takeda S, Morishita R. Diabetes and Alzheimer’s disease Diabetes and aging-related complications. Springer 2018; pp. 101-11.
[57]
Denver P, English A, McClean PL. Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice. Brain Behav Immun 2018; 70: 423-34.
[58]
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting insulin for alzheimer’s disease: Mechanisms, status and potential directions J Alzheimer Dis 2018(Preprint): ; 1-27.
[59]
Vignini A, Giulietti A, Nanetti L, et al. Alzheimer’s disease and diabetes: new insights and unifying therapies. Curr Diabetes Rev 2013; 9(3): 218-27.
[60]
Nicolls MR. The clinical and biological relationship between Type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res 2004; 1(1): 47-54.
[61]
McClean PL, Gault VA, Harriott P, Hölscher C. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: A link between diabetes and Alzheimer’s disease. Eur J Pharmacol 2010; 630(1-3): 158-62.
[62]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409-39.
[63]
Holst JJ, Deacon CF. Glucagon-like peptide 1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol 2004; 4(6): 589-96.