Review Article

阿司匹林分子和晶体的结构细节

卷 27, 期 1, 2020

页: [99 - 120] 页: 22

弟呕挨: 10.2174/0929867325666181031132823

价格: $65

摘要

在《结构化学的关键》一书中,我们回顾了最著名和最重要的药物之一:阿司匹林。晶体中分子结构和超分子缔合的决定因素虽然看似简单,但却不容忽视。我们从实验和理论两方面解决了这个问题,考虑了x射线测量和通过从头算重建分子和晶格的第一性原理的结果。一些令人费解的问题会让专家们头疼,也会引起公众的兴趣。因此,关于阿司匹林多态性的报道是有争议的,所谓的形式二是由于误读。同时,我们提出证据表明,当规则堆积转变为形式二的模式时,普通形式I的结构可能被破坏。这些问题甚至出现在独立分子的层面上:电子结构的各种技术计算出的最稳定的构象与晶体中遇到的不同。因为相关的构象异构体之间的能量差(计算最稳定与实验结构)很小,大约1千卡每摩尔,由误差线的使用方法,动乱的问题在于建模不精确,或超分子因素变异构象的偏好。通过对这一问题的研究,发现分子间的相互作用决定了分子在晶体中的构象。提出的问题从文献结果、争论、粘模型和分析自己重新做,以确保统一的观点所考虑的原型主题。

关键词: 阿司匹林,分子结构,多态性,超分子结构,分子间作用,计算模型。

[1]
Lehn, J.M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl., 1990, 29(11), 1304-1319.
[http://dx.doi.org/10.1002/anie.199013041]
[2]
Lehn, J.M. Supramolecular chemistry. Science, 1993, 260(5115), 1762-1763.
[http://dx.doi.org/10.1126/science.8511582] [PMID: 8511582]
[3]
Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. Engl., 2002, 41(6), 898-952.
[http://dx.doi.org/10.1002/1521-3773(20020315)41: 6<898:AID-ANIE898>3.0.CO;2-E] [PMID: 12491278]
[4]
Jeffrey, G.A. An Introduction to Hydrogen Bonding (Topics in Physical Chemistry); Oxford University Press: New York, 1997.
[5]
Desiraju, G.; Steiner, T. The Weak Hydrogen Bond.Structural Chemistry and Biology; Oxford University Press: Oxford, 2001.
[http://dx.doi.org/10.1093/acprof:oso/9780198509707.001.0001]
[6]
Rowland, R.S.; Taylor, R. Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der waals radii. J. Phys. Chem., 1996, 100(18), 7384-7391.
[http://dx.doi.org/10.1021/jp953141+]
[7]
Steiner, T.; Desiraju, G.R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem. Commun. (Camb.), 1998, 891-892.
[http://dx.doi.org/10.1039/a708099i]
[8]
Desiraju, G.R. Supramolecular synthons in crystal engineering-a new organic synthesis. Angew. Chem. Int. Ed. Engl., 1995, 34(21), 2311-2327.
[http://dx.doi.org/10.1002/anie.199523111]
[9]
Desiraju, G.R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. Engl., 2007, 46(44), 8342-8356.
[http://dx.doi.org/10.1002/anie.200700534] [PMID: 17902079]
[10]
Webber, M.J.; Appel, E.A.; Meijer, E.W.; Langer, R. Supramolecular biomaterials. Nat. Mater., 2016, 15(1), 13-26.
[http://dx.doi.org/10.1038/nmat4474] [PMID: 26681596]
[11]
Bertrand, N.; Gauthier, M.A.; Bouvet, C.; Moreau, P.; Petitjean, A.; Leroux, J.C.; Leblond, J. New pharmaceutical applications for macromolecular binders. J. Control. Release, 2011, 155(2), 200-210.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.027] [PMID: 21571017]
[12]
Leach, A.R. Molecular modelling: principles and applications, 2nd ed; Prentice Hall: Englewood Cliffs, N.J., 2001.
[13]
Massa, W. Crystal Structure Determination; Springer -Verlag: Berlin, 2004.
[http://dx.doi.org/10.1007/978-3-662-06431-3]
[14]
Usón, I.; Sheldrick, G.M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol., 1999, 9(5), 643-648.
[http://dx.doi.org/10.1016/S0959-440X(99)00020-2] [PMID: 10508770]
[15]
Ducruix, A.; Giegé, R. Crystallization of Nucleic Acids and Proteins: A Practical Approach, 2nd ed; Oxford University Press: Oxford, 1999.
[16]
Hanson, B.L.; Harp, J.M.; Bunick, G.J. The well-tempered protein crystal: annealing macromolecular crystals. Methods Enzymol., 2003, 368, 217-235.
[http://dx.doi.org/10.1016/S0076-6879(03)68012-2] [PMID: 14674276]
[17]
Rupp, B. Biomolecular Crystallography: Principles, Practice and Application to Structural Biology; Rupp, , B., Ed.; Garland Science: New York, 2009.
[18]
Hansch, C.; Kurup, A.; Garg, R.; Gao, H. Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem. Rev., 2001, 101(3), 619-672.
[http://dx.doi.org/10.1021/cr0000067] [PMID: 11712499]
[19]
Selassie, C.D. Burger’s medicinal Chemistry and Drug Discovery, 6th ed; Abraham, D.J., Ed.; Wiley New York, 2003, Vol. 1, pp. 1-48.
[20]
Allinger, N.L.; Burkert, U. Molecular Mechanics; American Chemical Society Publication: Washington, DC, 1982.
[21]
Mackerell, A.D. Jr. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem., 2004, 25(13), 1584-1604.
[http://dx.doi.org/10.1002/jcc.20082] [PMID: 15264253]
[22]
Becker, O.M. Computational biochemistry and biophysics; Marcel Dekker, Inc.: New York, 2001.
[http://dx.doi.org/10.1201/9780203903827]
[23]
Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, 2001.
[http://dx.doi.org/10.1002/3527600043]
[24]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[25]
Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[26]
Van Lenthe, E.; Baerends, E.J. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem., 2003, 24(9), 1142-1156.
[http://dx.doi.org/10.1002/jcc.10255] [PMID: 12759913]
[27]
Hehre, W.J.; Stewart, R.F.; Pople, J.A. Self-consistent molecular orbital methods. 1. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., 1969, 51, 2657-2664.
[http://dx.doi.org/10.1063/1.1672392]
[28]
Vane, J.R.; Bottling, R.M. Aspirin and Other Salicylates; Chapman and Hall Medical: London, 1992.
[29]
Wheatley, P.J. The crystal and molecular structure of aspirin. J. Chem. Soc., 1964, 6036-6048.
[http://dx.doi.org/10.1039/jr9640006036]
[30]
Kim, Y.; Machida, K.; Taga, T.; Osaki, K. Structure redetermination and packing analysis of aspirin crystal. Chem. Pharm. Bull. (Tokyo), 1985, 33(7), 2641-2647.
[http://dx.doi.org/10.1248/cpb.33.2641] [PMID: 4085037]
[31]
Bond, A.D.; Boese, R.; Desiraju, G.R. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew. Chem. Int. Ed. Engl., 2007, 46(4), 618-622.
[http://dx.doi.org/10.1002/anie.200603373] [PMID: 17139692]
[32]
Bauer, J.D.; Haussuhl, E.; Winkler, B.; Arbeck, D.; Milman, V.; Robertson, S. Elastic properties, thermal expansion, and polymorphism of acetylsalicylic acid cryst. Growth Des., 2010, 10(7), 3132-3140.
[http://dx.doi.org/10.1021/cg100241c]
[33]
Chan, E.J.; Welberry, T.R.; Heerdegen, A.P.; Goossens, D.J. Diffuse scattering study of aspirin forms (I) and (II). Acta Crystallogr. B, 2010, 66(Pt 6), 696-707.
[http://dx.doi.org/10.1107/S0108768110037055] [PMID: 21099031]
[34]
Varughese, S.; Kiran, M.S.R.N.; Solanko, K.A.; Bond, A.D.; Ramamurty, U.; Desiraju, G.R. Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation. Chem. Sci. (Camb.), 2011, 2, 2236-2242.
[http://dx.doi.org/10.1039/c1sc00430a]
[35]
Arputharaj, D.S.; Hathwar, V.R.; Row, T.N.G.; Kumaradhas, P. Topological electron density analysis and electrostatic properties of aspirin: an experimental and theoretical study. Cryst. Growth Des., 2012, 12(9), 4357-43.
[http://dx.doi.org/10.1021/cg300269n]
[36]
Wilson, C.C. Interesting proton behaviour in molecular structures. Variable temperature neutron diffraction and ab initio study of acetylsalicylic acid: characterising librational motions and comparing protons in different hydrogen bonding potentials. New J. Chem., 2002, 26(12), 1733-1739.
[http://dx.doi.org/10.1039/b203775k]
[37]
Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: New York, 2002.
[38]
Peverati, R.; Truhlar, D.G. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2014, 372(2011) 20120476
[http://dx.doi.org/10.1098/rsta.2012.0476] [PMID: 24516178]
[39]
Yu, L.; Stephenson, G.A.; Mitchell, C.A.; Bunnell, C.A.; Snorek, S.V.; Bowyer, J.J.; Borchardt, T.B.; Stowell, J.G.; Byrn, S.R. Thermochemistry and conformational polymorphism of a hexamorphic crystal system. J. Am. Chem. Soc., 2000, 122(4), 585-591.
[http://dx.doi.org/10.1021/ja9930622]
[40]
Vishweshwar, P.; McMahon, J.A.; Oliveira, M.; Peterson, M.L.; Zaworotko, M.J. The predictably elusive form II of aspirin. J. Am. Chem. Soc., 2005, 127(48), 16802-16803.
[http://dx.doi.org/10.1021/ja056455b] [PMID: 16316223]
[41]
Desiraju, G.R. The C-H-O hydrogen bond in crystals: what is it? Acc. Chem. Res., 1991, 24(10), 290-296.
[http://dx.doi.org/10.1021/ar00010a002]
[42]
Desiraju, G.R. The C-h···o hydrogen bond: structural implications and supramolecular design. Acc. Chem. Res., 1996, 29(9), 441-449.
[http://dx.doi.org/10.1021/ar950135n] [PMID: 23618410]
[43]
Veljković, D.Ž.; Janjić, G.V.; Zarić, S.D. Are the C-H•••O interactions linear? Case of the aromatic CH donors. CrystEngComm, 2011, 13, 5005-5010.
[http://dx.doi.org/10.1039/c1ce05065f]
[44]
Nishioa, M. CH/π hydrogen bonds in crystals. CrystEngComm, 2004, 6, 130-158.
[http://dx.doi.org/10.1039/b313104a]
[45]
Stojanović, S.Đ.; Medaković, V.B.; Predović, G.; Beljanski, M.; Zarić, S.D. XH/pi interactions with the pi system of porphyrin ring in porphyrin-containing proteins. J. Biol. Inorg. Chem., 2007, 12(7), 1063-1071.
[http://dx.doi.org/10.1007/s00775-007-0276-0] [PMID: 17659366]
[46]
Bond, A.D.; Boese, R.; Desiraju, G.R. On the polymorphism of aspirin. Angew. Chem. Int. Ed. Engl., 2007, 46(4), 615-617.
[http://dx.doi.org/10.1002/anie.200602378] [PMID: 17131435]
[47]
D’Ascenzo, L.; Auffinger, P. A comprehensive classification and nomenclature of carboxyl-carboxyl(ate) supramolecular motifs and related catemers: implications for biomolecular systems. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2015, 71(Pt 2), 164-175.
[http://dx.doi.org/10.1107/S205252061500270X] [PMID: 25827369]
[48]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M. Li. X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A. Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. In: Gaussian 09; Gaussian; Inc.: Wallingford, CT, 2009.
[49]
Choudhary, A.; Kamer, K.J.; Raines, R.T. An n→π* interaction in aspirin: implications for structure and reactivity. J. Org. Chem., 2011, 76(19), 7933-7937.
[http://dx.doi.org/10.1021/jo201389d] [PMID: 21842865]
[50]
Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88(6), 899-926.
[http://dx.doi.org/10.1021/cr00088a005]
[51]
Bürgi, H.B.; Dunitz, J.D. From crystal statics to chemical dynamics. Acc. Chem. Res., 1983, 16(5), 153-161.
[http://dx.doi.org/10.1021/ar00089a002]
[52]
Glaser, R. Aspirin. An ab initio quantum-mechanical study of conformational preferences and of neighboring group interactions. J. Org. Chem., 2001, 66(3), 771-779.
[http://dx.doi.org/10.1021/jo001241s] [PMID: 11430095]
[53]
Yurtsever, Z.; Erman, B.; Yurtsever, E. Competitive hydrogen bonding in aspirin-aspirin and aspirin-leucine interactions. Turk. J. Chem., 2012, 36, 383-395.
[http://dx.doi.org/10.3906/kim-1112-16]
[54]
Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev., 1934, 46(7), 618-622.
[http://dx.doi.org/10.1103/PhysRev.46.618]
[55]
Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Direct MP2 gradient method. Chem. Phys. Lett., 1990, 166, 275-280.
[http://dx.doi.org/10.1016/0009-2614(90)80029-D]
[56]
Cížek, J. On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys., 1966, 45(11), 4256.
[http://dx.doi.org/10.1063/1.1727484]
[57]
Stanton, J.F. Why CCSD(T) works: a different perspective. Chem. Phys. Lett., 1997, 281(1-3), 130-134.
[http://dx.doi.org/10.1016/S0009-2614(97)01144-5]
[58]
Dunning, T.H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 1989, 90, 1007-1023.
[http://dx.doi.org/10.1063/1.456153]
[59]
Ouvrard, C.; Price, S.L. Toward crystal structure prediction for conformationally flexible molecules: the headaches illustrated by aspirin. Cryst. Growth Des., 2004, 4(6), 1119-1127.
[http://dx.doi.org/10.1021/cg049922u]
[60]
Dunitz, J.D. Are crystal structures predictable? Chem. Commun. (Camb.), 2003, (5), 545-548.
[http://dx.doi.org/10.1039/b211531j] [PMID: 12669825]
[61]
Beyer, T.; Lewis, T.; Price, S.L. Which organic crystal structures are predictable by lattice energy minimisation? CrystEngComm, 2001, 3(44), 178-212.
[http://dx.doi.org/10.1039/B108135G]
[62]
Lommerse, J.P.M.; Motherwell, W.D.S.; Ammon, H.L.; Dunitz, J.D.; Gavezzotti, A.; Hofmann, D.W.M.; Leusen, F.J.J.; Mooij, W.T.M.; Price, S.L.; Schweizer, B.; Schmidt, M.U.; Verwer, P.; Williams, D.E.; Williams, D.E. van Eijck BP. A test of crystal structure prediction of small organic molecules. Acta Crystallogr. B, 2000, 56(Pt 4), 697-714.
[http://dx.doi.org/10.1107/S0108768100004584] [PMID: 10944263]
[63]
Motherwell, W.D.S.; Ammon, H.L.; Dunitz, J.D.; Dzyabchenko, A.; Erk, P.; Gavezzotti, A.; Hofmann, D.W.M.; Leusen, F.J.J.; Lommerse, J.P.M.; Mooij, W.T.M.; Price, S.L.; Scheraga, H.; Schweizer, B.; Schmidt, M.U.; van Eijck, B.P.; Verwer, P.; Williams, D.E. Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr. B, 2002, 58(Pt 4), 647-661.
[http://dx.doi.org/10.1107/S0108768102005669] [PMID: 12149555]
[64]
Verwer, P.; Leusen, F.J.J. Computer Simulation to Predict Possible Crystal Polymorphs; Wiley-VCH: New York, 1998, Vol. 12, pp. 327-365.
[http://dx.doi.org/10.1002/9780470125892.ch7]
[65]
Brodersen, S.; Wilke, S.; Leusen, F.J.J.; Engel, G. A study of different approaches to the electrostatic interaction in force field methods for organic crystals. Phys. Chem. Chem. Phys., 2003, 5(21), 4923-4931.
[http://dx.doi.org/10.1039/b306396h]
[66]
Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem., 1990, 94(26), 8897-8909.
[http://dx.doi.org/10.1021/j100389a010]
[67]
Payne, R.S.; Rowe, R.C.; Roberts, R.J.; Charlton, M.H.; Docherty, R. Potential polymorphs of aspirin. J. Comput. Chem., 1999, 20(2), 262-273.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<262:AID-JCC8>3.0.CO;2-8]
[68]
Mooij, W.T.M.; van Eijck, B.P.; Kroon, J. Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. J. Am. Chem. Soc., 2000, 122(4), 3500-3505.
[http://dx.doi.org/10.1021/ja993945t]
[69]
van Eijck, B.P. Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. Part II. Accurate energy minimization. J. Comput. Chem., 2001, 22(8), 805-815.
[http://dx.doi.org/10.1002/jcc.1046]
[70]
Allen, F.H.; Harris, S.E.; Taylor, R. Comparison of conformer distributions in the crystalline state with conformational energies calculated by ab initio techniques. J. Comput. Aided Mol. Des., 1996, 10(3), 247-254.
[http://dx.doi.org/10.1007/BF00355046] [PMID: 8808740]
[71]
Holden, J.R.; Du, Z.Y.; Ammon, H.L. Prediction of possible crystal structures for C-, H-, N-, O-, and F-containing organic compounds. J. Comput. Chem., 1993, 14(4), 422-437.
[http://dx.doi.org/10.1002/jcc.540140406]
[72]
ADF2010. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available at:. http://www.scm.com
[73]
te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Guerra, C.F.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Cemistry with ADF. J. Comput. Chem., 2001, 22(9), 931-967.
[http://dx.doi.org/10.1002/jcc.1056]
[74]
Bickelhaupt, F.M.; Baerends, E.J. Reviews of Computational Chemistry, Boyd, D.B; Lipkowitz, K.B., Ed.; Wiley-VCH: New York, 2000, Vol. 15, pp. 1-86.
[75]
Wilson, C.C. Hydrogen atoms in acetylsalicylic acid (Aspirin): the librating methyl group and probing the potential well in the hydrogen-bonded dimer. Chem. Phys. Lett., 2001, 335(1-2), 57-63.
[http://dx.doi.org/10.1016/S0009-2614(01)00019-7]
[76]
Cabezas, C.; Alonso, J.L.; López, J.C.; Mata, S. Unveiling the shape of aspirin in the gas phase. Angew. Chem. Int. Ed. Engl., 2012, 51(6), 1375-1378.
[http://dx.doi.org/10.1002/anie.201106621] [PMID: 22223259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy