Review Article

分枝杆菌HBHA蛋白:有希望的结核病生物标志物

卷 26, 期 11, 2019

页: [2051 - 2060] 页: 10

弟呕挨: 10.2174/0929867325666181029165805

价格: $65

摘要

结核病(TB)研究的一个主要目标是在感染结核分枝杆菌(Mtb)的受试者中,从潜伏感染的受试者中鉴定出患有活动性结核病或发生活动性疾病的风险较高的受试者。 Mtb感染和结核病的经典异质性是鉴定可靠的生物标志物的主要障碍,所述生物标志物可基于疾病风险对Mtb感染的受试者进行分层。 肝素结合血凝素(HBHA)是分枝杆菌表面抗原,其与结核(TB)发病机理有关。 针对HBHA的宿主免疫应答取决于TB状态,并且一些研究支持HBHA作为TB的有用生物标志物的作用。

关键词: 结核病,生物标志物,HBHA,个性化医疗,结核分枝杆菌(Mtb),耐多药结核病。

« Previous
[1]
World Health Organization. Global Tuberculosis Report 2018, 2018.
[2]
Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E.A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G.K.; Pasipanodya, J.G.; Rodrigues, C.; Clark, T.G.; Sirgel, F.A.; Esmail, A.; Lin, H.H.; Atre, S.R.; Schaaf, H.S.; Chang, K.C.; Lange, C.; Nahid, P.; Udwadia, Z.F.; Horsburgh, C.R., Jr; Churchyard, G.J.; Menzies, D.; Hesseling, A.C.; Nuermberger, E.; McIlleron, H.; Fennelly, K.P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C.M.; Padayatchi, N.; Warren, R.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med., 2017. S2213-2600(17)30079-6.
[3]
Delogu, G.; Goletti, D. The spectrum of tuberculosis infection: new perspectives in the era of biologics. J. Rheumatol. Suppl., 2014, 91, 11-16.
[4]
Houben, R.M.; Dodd, P.J. The global burden of latent tuberculosis infection: A Re-estimation using mathematical modelling. PLoS Med., 2016, 13(10)e1002152
[5]
Wolf, A.J.; Desvignes, L.; Linas, B.; Banaiee, N.; Tamura, T.; Takatsu, K.; Ernst, J.D. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med., 2008, 205(1), 105-115.
[6]
Gallegos, A.M.; Pamer, E.G.; Glickman, M.S. Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med., 2008, 205(10), 2359-2368.
[7]
Balasubramanian, V.; Wiegeshaus, E.H.; Taylor, B.T.; Smith, D.W. Pathogenesis of tuberculosis: Pathway to apical localization. Tuber. Lung Dis., 1994, 75(3), 168-178.
[8]
Hernández-Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.A.; Bjune, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet, 2000, 356(9248), 2133-2138.
[9]
Neyrolles, O.; Hernández-Pando, R.; Pietri-Rouxel, F.; Fornès, P.; Tailleux, L.; Barrios Payán, J.A.; Pivert, E.; Bordat, Y.; Aguilar, D.; Prévost, M.C.; Petit, C.; Gicquel, B. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One, 2006, 1e43
[10]
Bishai, W.R. Rekindling old controversy on elusive lair of latent tuberculosis. Lancet, 2000, 356(9248), 2113-2114.
[11]
Pethe, K.; Alonso, S.; Biet, F.; Delogu, G.; Brennan, M.J.; Locht, C.; Menozzi, F.D. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 2001, 412(6843), 190-194.
[12]
Cadena, A.M.; Flynn, J.L.; Fortune, S.M. The importance of first impressions: Early events in Mycobacterium tuberculosis infection influence outcome. MBio, 2016, 7(2), e00342-e16.
[13]
Lin, P.L.; Ford, C.B.; Coleman, M.T.; Myers, A.J.; Gawande, R.; Ioerger, T.; Sacchettini, J.; Fortune, S.M.; Flynn, J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med., 2014, 20(1), 75-79.
[14]
Cadena, A.M.; Fortune, S.M.; Flynn, J.L. Heterogeneity in tuberculosis. Nat. Rev. Immunol., 2017, 17(11), 691-702.
[15]
Chao, M.C.; Rubin, E.J. Letting sleeping dos lie: Does dormancy play a role in tuberculosis? Annu. Rev. Microbiol., 2010, 64, 293-311.
[16]
Gengenbacher, M.; Kaufmann, S.H. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev., 2012, 36(3), 514-532.
[17]
Pai, M. Spectrum of latent tuberculosis - existing tests cannot resolve the underlying phenotypes. Nat. Rev. Microbiol., 2010, 8(3), 242.
[18]
Goletti, D.; Sanduzzi, A.; Delogu, G. Performance of the tuberculin skin test and interferon-γ release assays: An update on the accuracy, cutoff stratification, and new potential immune-based approaches. J. Rheumatol. Suppl., 2014, 91, 24-31.
[19]
Petruccioli, E.; Scriba, T.J.; Petrone, L.; Hatherill, M.; Cirillo, D.M.; Joosten, S.A.; Ottenhoff, T.H.; Denkinger, C.M.; Goletti, D. Correlates of tuberculosis risk: Predictive biomarkers for progression to active tuberculosis. Eur. Respir. J., 2016, 48(6), 1751-1763.
[20]
Walzl, G.; Haks, M.C.; Joosten, S.A.; Kleynhans, L.; Ronacher, K.; Ottenhoff, T.H. Clinical immunology and multiplex biomarkers of human tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 5(4)a018515
[21]
Lawn, S.D.; Kerkhoff, A.D.; Vogt, M.; Wood, R. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: A descriptive study. Lancet Infect. Dis., 2012, 12(3), 201-209.
[22]
Pandie, S.; Peter, J.G.; Kerbelker, Z.S.; Meldau, R.; Theron, G.; Govender, U.; Ntsekhe, M.; Dheda, K.; Mayosi, B.M. The diagnostic accuracy of pericardial and urinary lipoarabinomannan (LAM) assays in patients with suspected tuberculous pericarditis. Sci. Rep., 2016, 6, 32924.
[23]
Hanifa, Y.; Telisinghe, L.; Fielding, K.L.; Malden, J.L.; Churchyard, G.J.; Grant, A.D.; Charalambous, S. The diagnostic accuracy of urine lipoarabinomannan test for tuberculosis screening in a South African correctional facility. PLoS One, 2015, 10(5)e0127956
[24]
Paris, L.; Magni, R.; Zaidi, F.; Araujo, R.; Saini, N.; Harpole, M.; Coronel, J.; Kirwan, D.E.; Steinberg, H.; Gilman, R.H.; Petricoin, E.F., III; Nisini, R.; Luchini, A.; Liotta, L. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci. Transl. Med., 2017, 9(420)eaal2807
[25]
Berry, M.P.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; Quinn, C.; Blankenship, D.; Dhawan, R.; Cush, J.J.; Mejias, A.; Ramilo, O.; Kon, O.M.; Pascual, V.; Banchereau, J.; Chaussabel, D.; O’Garra, A. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309), 973-977.
[26]
Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; Abrahams, D.; Kafaar, F.; Hawkridge, T.; Verver, S.; Hughes, E.J.; Ota, M.; Sutherland, J.; Howe, R.; Dockrell, H.M.; Boom, W.H.; Thiel, B.; Ottenhoff, T.H.M.; Mayanja-Kizza, H.; Crampin, A.C.; Downing, K.; Hatherill, M.; Valvo, J.; Shankar, S.; Parida, S.K.; Kaufmann, S.H.E.; Walzl, G.; Aderem, A.; Hanekom, W.A. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(10035), 2312-2322.
[27]
Maertzdorf, J.; McEwen, G.; Weiner, J., III; Tian, S.; Lader, E.; Schriek, U.; Mayanja-Kizza, H.; Ota, M.; Kenneth, J.; Kaufmann, S.H. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol. Med., 2016, 8(2), 86-95.
[28]
Duffy, F.J.; Thompson, E.; Downing, K.; Suliman, S.; Mayanja-Kizza, H.; Boom, W.H.; Thiel, B.; Weiner Iii, J.; Kaufmann, S.H.E.; Dover, D.; Tabb, D.L.; Dockrell, H.M.; Ottenhoff, T.H.M.; Tromp, G.; Scriba, T.J.; Zak, D.E.; Walzl, G. A serum circulating miRNA signature for short-term risk of progression to active tuberculosis among household contacts. Front. Immunol., 2018, 9, 661.
[29]
Singhania, A.; Verma, R.; Graham, C.M.; Lee, J.; Tran, T.; Richardson, M.; Lecine, P.; Leissner, P.; Berry, M.P.R.; Wilkinson, R.J.; Kaiser, K.; Rodrigue, M.; Woltmann, G.; Haldar, P.; O’Garra, A. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat. Commun., 2018, 9(1), 2308.
[30]
Suliman, S.; Thompson, E.; Sutherland, J.; Weiner Rd, J.; Ota, M.O.C.; Shankar, S.; Penn-Nicholson, A.; Thiel, B.; Erasmus, M.; Maertzdorf, J.; Duffy, F.J.; Hill, P.C.; Hughes, E.J.; Stanley, K.; Downing, K.; Fisher, M.L.; Valvo, J.; Parida, S.K.; van der Spuy, G.; Tromp, G.; Adetifa, I.M.O.; Donkor, S.; Howe, R.; Mayanja-Kizza, H.; Boom, W.H.; Dockrell, H.; Ottenhoff, T.H.M.; Hatherill, M.; Aderem, A.; Hanekom, W.A.; Scriba, T.J.; Kaufmann, S.H.; Zak, D.E.; Walzl, G. Four-gene pan-african blood signature predicts progression to tuberculosis. Am. J. Respir. Crit. Care Med., 2018.
[http://dx.doi.org/10.1164/rccm.201711-2340OC]
[31]
Steingart, K.R.; Flores, L.L.; Dendukuri, N.; Schiller, I.; Laal, S.; Ramsay, A.; Hopewell, P.C.; Pai, M. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: an updated systematic review and meta-analysis. PLoS Med., 2011, 8(8)e1001062
[32]
Dowdy, D.W.; Steingart, K.R.; Pai, M. Serological testing versus other strategies for diagnosis of active tuberculosis in India: A cost-effectiveness analysis. PLoS Med., 2011, 8(8)e1001074
[33]
Ling, D.I.; Pai, M.; Davids, V.; Brunet, L.; Lenders, L.; Meldau, R.; Calligaro, G.; Allwood, B.; van Zyl-Smit, R.; Peter, J.; Bateman, E.; Dawson, R.; Dheda, K. Are interferon-γ release assays useful for diagnosing active tuberculosis in a high-burden setting? Eur. Respir. J., 2011, 38(3), 649-656.
[34]
Baird, M.S. New synthetic lipid antigens for rapid serological diagnosis of tuberculosis. PLoS One, 2017, Aug 14;. 12(8)e0181414
[http://dx.doi.org/10.1371/journal.pone.0181414]
[35]
Legesse, M.; Ameni, G.; Medhin, G.; Mamo, G.; Franken, K.L.; Ottenhoff, T.H.; Bjune, G.; Abebe, F. IgA response to ESAT-6/CFP-10 and Rv2031 antigens varies in patients with culture-confirmed pulmonary tuberculosis, healthy Mycobacterium tuberculosis-infected and non-infected individuals in a tuberculosis endemic setting, Ethiopia. Scand. J. Immunol., 2013, 78(3), 266-274.
[36]
Zimmermann, N.; Thormann, V.; Hu, B.; Köhler, A.B.; Imai-Matsushima, A.; Locht, C.; Arnett, E.; Schlesinger, L.S.; Zoller, T.; Schürmann, M.; Kaufmann, S.H.; Wardemann, H. Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Mol. Med., 2016, 8(11), 1325-1339.
[37]
Lu, L.L.; Chung, A.W.; Rosebrock, T.R.; Ghebremichael, M.; Yu, W.H.; Grace, P.S.; Schoen, M.K.; Tafesse, F.; Martin, C.; Leung, V.; Mahan, A.E.; Sips, M.; Kumar, M.P.; Tedesco, J.; Robinson, H.; Tkachenko, E.; Draghi, M.; Freedberg, K.J.; Streeck, H.; Suscovich, T.J.; Lauffenburger, D.A.; Restrepo, B.I.; Day, C.; Fortune, S.M.; Alter, G. A functional role for antibodies in tuberculosis. Cell, 2016, 167(2), 433-443.e14.
[38]
Casadevall, A. Antibodies to Mycobacterium tuberculosis. N. Engl. J. Med., 2017, 376(3), 283-285.
[39]
Pai, M.; Joshi, R.; Dogra, S.; Zwerling, A.A.; Gajalakshmi, D.; Goswami, K.; Reddy, M.V.; Kalantri, A.; Hill, P.C.; Menzies, D.; Hopewell, P.C. T-cell assay conversions and reversions among household contacts of tuberculosis patients in rural India. Int. J. Tuberc. Lung Dis., 2009, 13(1), 84-92.
[40]
Andersen, P.; Doherty, T.M.; Pai, M.; Weldingh, K. The prognosis of latent tuberculosis: Can disease be predicted? Trends Mol. Med., 2007, 13(5), 175-182.
[41]
Andrews, J.R.; Nemes, E.; Tameris, M.; Landry, B.S.; Mahomed, H.; McClain, J.B.; Fletcher, H.A.; Hanekom, W.A.; Wood, R.; McShane, H.; Scriba, T.J.; Hatherill, M. Serial QuantiFERON testing and tuberculosis disease risk among young children: An observational cohort study. Lancet Respir. Med., 2017, 5(4), 282-290.
[42]
Vanini, V.; Petruccioli, E.; Gioia, C.; Cuzzi, G.; Orchi, N.; Rianda, A.; Alba, L.; Giancola, M.L.; Conte, A.; Schininà, V.; Rizzi, E.B.; Girardi, E.; Goletti, D. IP-10 is an additional marker for tuberculosis (TB) detection in HIV-infected persons in a low-TB endemic country. J. Infect., 2012, 65(1), 49-59.
[43]
Cirillo, D.M.; Barcellini, L.; Goletti, D. Preliminary data on precision of QuantiFERON-TB Plus performance. Eur. Respir. J., 2016, 48(3), 955-956.
[44]
Petruccioli, E.; Chiacchio, T.; Pepponi, I.; Vanini, V.; Urso, R.; Cuzzi, G.; Barcellini, L.; Cirillo, D.M.; Palmieri, F.; Ippolito, G.; Goletti, D. First characterization of the CD4 and CD8 T-cell responses to QuantiFERON-TB Plus. J. Infect., 2016, 73(6), 588-597.
[45]
Delogu, G.; Brennan, M.J. Functional domains present in the mycobacterial hemagglutinin, HBHA. J. Bacteriol., 1999, 181(24), 7464-7469.
[46]
Esposito, C.; Pethoukov, M.V.; Svergun, D.I.; Ruggiero, A.; Pedone, C.; Pedone, E.; Berisio, R. Evidence for an elongated dimeric structure of heparin-binding hemagglutinin from Mycobacterium tuberculosis. J. Bacteriol., 2008, 190(13), 4749-4753.
[47]
Delogu, G.; Fadda, G.; Brennan, M.J. Impact of structural domains of the heparin binding hemagglutinin of Mycobacterium tuberculosis on function. Protein Pept. Lett., 2012, 19(10), 1035-1039.
[48]
van der Wel, N.; Hava, D.; Houben, D.; Fluitsma, D.; van Zon, M.; Pierson, J.; Brenner, M.; Peters, P.J.M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell, 2007, 129(7), 1287-1298.
[49]
Pethe, K.; Bifani, P.; Drobecq, H.; Sergheraert, C.; Debrie, A.S.; Locht, C.; Menozzi, F.D. Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10759-10764.
[50]
Temmerman, S.; Pethe, K.; Parra, M.; Alonso, S.; Rouanet, C.; Pickett, T.; Drowart, A.; Debrie, A.S.; Delogu, G.; Menozzi, F.D.; Sergheraert, C.; Brennan, M.J.; Mascart, F.; Locht, C. Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat. Med., 2004, 10(9), 935-941.
[51]
Dupres, V.; Menozzi, F.D.; Locht, C.; Clare, B.H.; Abbott, N.L.; Cuenot, S.; Bompard, C.; Raze, D.; Dufrêne, Y.F. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods, 2005, 2(7), 515-520.
[52]
Verbelen, C.; Raze, D.; Dewitte, F.; Locht, C.; Dufrêne, Y.F. Single-molecule force spectroscopy of mycobacterial adhesin-adhesin interactions. J. Bacteriol., 2007, 189(24), 8801-8806.
[53]
Menozzi, F.D.; Rouse, J.H.; Alavi, M.; Laude-Sharp, M.; Muller, J.; Bischoff, R.; Brennan, M.J.; Locht, C. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med., 1996, 184(3), 993-1001.
[54]
Delogu, G.; Sanguinetti, M.; Posteraro, B.; Rocca, S.; Zanetti, S.; Fadda, G. The hbhA gene of Mycobacterium Tuberculosis is specifically upregulated in the lungs but not in the spleens of aerogenically infected mice. Infect. Immun., 2006, 74(5), 3006-3011.
[55]
Menozzi, F.D.; Reddy, V.M.; Cayet, D.; Raze, D.; Debrie, A.S.; Dehouck, M.P. Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without althering the integrity of tight junctions. Microbes Infect., 2005, 8(1), 1-9.
[56]
Lebrun, P.; Raze, D.; Fritzinger, B.; Wieruszeski, J.M.; Biet, F.; Dose, A.; Carpentier, M.; Schwarzer, D.; Allain, F.; Lippens, G.; Locht, C. Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis. PLoS One, 2012, 7(3)e32421
[57]
Esposito, C.; Marasco, D.; Delogu, G.; Pedone, E.; Berisio, R. Heparin-binding hemagglutinin HBHA from Mycobacterium Tuberculosis affects actin polymerisation. Biochem. Biophys. Res. Commun., 2011, 410(2), 339-344.
[58]
Verbelen, C.; Dupres, V.; Raze, D.; Bompard, C.; Locht, C.; Dufrêne, Y.F. Interaction of the mycobacterial heparin-binding hemagglutinin with actin, as evidenced by single-molecule force spectroscopy. J. Bacteriol., 2008, 190(23), 7614-7620.
[59]
Lanfranconi, M.P.; Alvarez, H.M. Functional divergence of HBHA from Mycobacterium Tuberculosis and its evolutionary relationship with TadA from Rhodococcus opacus. Biochimie, 2016, 127, 241-248.
[60]
Biet, F.; Angela de Melo Marques, M.; Grayon, M.; Xavier da Silveira, E.K.; Brennan, P.J.; Drobecq, H.; Raze, D.; Vidal Pessolani, M.C.; Locht, C.; Menozzi, F.D. Mycobacterium smegmatis produces an HBHA homologue which is not involved in epithelial adherence. Microbes Infect., 2007, 9(2), 175-182.
[61]
Esposito, C.; Carullo, P.; Pedone, E.; Graziano, G.; Del Vecchio, P.; Berisio, R. Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from Mycobacterium Tuberculosis: implications for bacterial agglutination. FEBS Lett., 2010, 584(6), 1091-1096.
[62]
Menozzi, F.D.; Reddy, V.M.; Cayet, D.; Raze, D.; Debrie, A.S.; Dehouck, M.P.; Cecchelli, R.; Locht, C. Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect., 2006, 8(1), 1-9.
[63]
Menozzi, F.D.; Bischoff, R.; Fort, E.; Brennan, M.J.; Locht, C. Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12625-12630.
[64]
Esposito, C.; Cantisani, M.; D’Auria, G.; Falcigno, L.; Pedone, E.; Galdiero, S.; Berisio, R. Mapping key interactions in the dimerization process of HBHA from Mycobacterium tuberculosis, insights into bacterial agglutination. FEBS Lett., 2012, 586(6), 659-667.
[65]
Huang, T.Y.; Irene, D.; Zulueta, M.M.; Tai, T.J.; Lain, S.H.; Cheng, C.P.; Tsai, P.X.; Lin, S.Y.; Chen, Z.G.; Ku, C.C.; Hsiao, C.D.; Chyan, C.L.; Hung, S.C. Structure of the complex between a heparan sulfate octasaccharide and mycobacterial heparin-binding hemagglutinin. Angew. Chem. Int. Ed. Engl., 2017, 56(15), 4192-4196.
[66]
Masungi, C.; Temmerman, S.; Van Vooren, J.P.; Drowart, A.; Pethe, K.; Menozzi, F.D.; Locht, C.; Mascart, F. Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J. Infect. Dis., 2002, 185(4), 513-520.
[67]
Zanetti, S.; Bua, A.; Delogu, G.; Pusceddu, C.; Mura, M.; Saba, F.; Pirina, P.; Garzelli, C.; Vertuccio, C.; Sechi, L.A.; Fadda, G. Patients with pulmonary tuberculosis develop a strong humoral response against methylated heparin-binding hemagglutinin. Clin. Diagn. Lab. Immunol., 2005, 12(9), 1135-1138.
[68]
Belay, M.; Legesse, M.; Mihret, A.; Ottenhoff, T.H.; Franken, K.L.; Bjune, G.; Abebe, F. IFN-γ and IgA against non-methylated heparin-binding hemagglutinin as markers of protective immunity and latent tuberculosis: Results of a longitudinal study from an endemic setting. J. Infect., 2016, 72(2), 189-200.
[69]
Delogu, G.; Bua, A.; Pusceddu, C.; Parra, M.; Fadda, G.; Brennan, M.J.; Zanetti, S. Expression and purification of recombinant methylated HBHA in Mycobacterium smegmatis. FEMS Microbiol. Lett., 2004, 239(1), 33-39.
[70]
Delogu, G.; Chiacchio, T.; Vanini, V.; Butera, O.; Cuzzi, G.; Bua, A.; Molicotti, P.; Zanetti, S.; Lauria, F.N.; Grisetti, S.; Magnavita, N.; Fadda, G.; Girardi, E.; Goletti, D. Methylated HBHA produced in M. smegmatis discriminates between active and non-active tuberculosis disease among RD1-responders. PLoS One, 2011, 6(3)e18315
[71]
Corbière, V.; Pottier, G.; Bonkain, F.; Schepers, K.; Verscheure, V.; Lecher, S.; Doherty, T.M.; Locht, C.; Mascart, F. Risk stratification of latent tuberculosis defined by combined interferon gamma release assays. PLoS One, 2012, 7(8)e43285
[72]
Delogu, G.; Vanini, V.; Cuzzi, G.; Chiacchio, T.; De Maio, F.; Battah, B.; Pinnetti, C.; Sampaolesi, A.; Antinori, A.; Goletti, D. Lack of response to HBHA in HIV-infected patients with latent tuberculosis infection. Scand. J. Immunol., 2016, 84(6), 344-352.
[73]
Chiacchio, T.; Delogu, G.; Vanini, V.; Cuzzi, G.; De Maio, F.; Pinnetti, C.; Sampaolesi, A.; Antinori, A.; Goletti, D. Immune characterization of the HBHA-specific response in Mycobacterium tuberculosis-infected patients with or without HIV infection. PLoS One, 2017, 12(8)e0183846
[74]
Wen, H.L.; Li, C.L.; Li, G.; Lu, Y.H.; Li, H.C.; Li, T.; Zhao, H.M.; Wu, K.; Lowrie, D.B.; Lv, J.X.; Lu, S.H.; Fan, X.Y. Involvement of methylated HBHA expressed from Mycobacterium smegmatis in an IFN-γ release assay to aid discrimination between latent infection and active tuberculosis in BCG-vaccinated populations. Eur. J. Clin. Microbiol. Infect. Dis., 2017, 36(8), 1415-1423.
[75]
Hougardy, J.M.; Place, S.; Hildebrand, M.; Drowart, A.; Debrie, A.S.; Locht, C.; Mascart, F. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am. J. Respir. Crit. Care Med., 2007, 176(4), 409-416.
[76]
Boer, M.C.; van Meijgaarden, K.E.; Goletti, D.; Vanini, V.; Prins, C.; Ottenhoff, T.H.; Joosten, S.A. KLRG1 and PD-1 expression are increased on T-cells following tuberculosis-treatment and identify cells with different proliferative capacities in BCG-vaccinated adults. Tuberculosis (Edinb.), 2016, 97, 163-171.
[77]
Parra, M.; Pickett, T.; Delogu, G.; Dheenadhayalan, V.; Debrie, A.S.; Locht, C.; Brennan, M.J. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect. Immun., 2004, 72(12), 6799-6805.
[78]
Delogu, G.; Fadda, G. The quest for a new vaccine against tuberculosis. J. Infect. Dev. Ctries., 2009, 3(1), 5-15.
[79]
Smith, S.G.; Lecher, S.; Blitz, R.; Locht, C.; Dockrell, H.M. Broad heparin-binding haemagglutinin-specific cytokine and chemokine response in infants following Mycobacterium bovis BCG vaccination. Eur. J. Immunol., 2012, 42(9), 2511-2522.
[80]
Rouanet, C.; Debrie, A.S.; Lecher, S.; Locht, C. Subcutaneous boosting with heparin binding haemagglutinin increases BCG-induced protection against tuberculosis. Microbes Infect., 2009, 11(13), 995-1001.
[81]
Guerrero, G.G.; Debrie, A.S.; Locht, C. Boosting with mycobacterial heparin-binding haemagglutinin enhances protection of Mycobacterium bovis BCG-vaccinated newborn mice against M. tuberculosis. Vaccine, 2010, 28(27), 4340-4347.
[82]
Verwaerde, C.; Debrie, A.S.; Dombu, C.; Legrand, D.; Raze, D.; Lecher, S.; Betbeder, D.; Locht, C. HBHA vaccination may require both Th1 and Th17 immune responses to protect mice against tuberculosis. Vaccine, 2014, 32(47), 6240-6250.
[83]
Kohama, H.; Umemura, M.; Okamoto, Y.; Yahagi, A.; Goga, H.; Harakuni, T.; Matsuzaki, G.; Arakawa, T. Mucosal immunization with recombinant heparin-binding haemagglutinin adhesin suppresses extrapulmonary dissemination of Mycobacterium bovis bacillus Calmette-Guérin (BCG) in infected mice. Vaccine, 2008, 26(7), 924-932.
[84]
Fukui, M.; Shinjo, K.; Umemura, M.; Shigeno, S.; Harakuni, T.; Arakawa, T.; Matsuzaki, G. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen. Microbiol. Immunol., 2015, 59(12), 735-743.
[85]
Stylianou, E.; Diogo, G.R.; Pepponi, I.; van Dolleweerd, C.; Arias, M.A.; Locht, C.; Rider, C.C.; Sibley, L.; Cutting, S.M.; Loxley, A.; Ma, J.K.; Reljic, R. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur. J. Immunol., 2014, 44(2), 440-449.
[86]
Hart, P.; Copland, A.; Diogo, G.R.; Harris, S.; Spallek, R.; Oehlmann, W.; Singh, M.; Basile, J.; Rottenberg, M.; Paul, M.J.; Reljic, R. Nanoparticle-fusion protein complexes protect against Mycobacterium tuberculosis infection. Mol. Ther., 2018, 26(3), 822-833.
[87]
Copland, A.; Diogo, G.R.; Hart, P.; Harris, S.; Tran, A.C.; Paul, M.J.; Singh, M.; Cutting, S.M.; Reljic, R. Mucosal delivery of fusion proteins with Bacillus subtilis spores enhances protection against tuberculosis by bacillus calmette-guérin. Front. Immunol., 2018, 9, 346.
[88]
Esposito, C.; Carullo, P.; Pedone, E.; Graziano, G.; Del Vecchio, P.; Berisio, R. Dimerisation and structural integrity of heparin binding Hemagglutinin A from Mycobacterium tuberculosis: Implications for bacterial agglutination. FEBS Lett., 2010, 584(6), 1091-1096.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy