[1]
Nyström, B. Spinal fusion in the treatment of chronic low back pain: Rationale for improvement. Open Orthop. J., 2012, 6, 478-481.
[2]
Nyström, B.; Weber, H.; Schillberg, B.; Taube, A. Symptoms and signs possibly indicating segmental, discogenic pain. A fusion study with 18 years of follow-up. Scand. J. Pain, 2017, 16, 213-220.
[3]
Machado, G.C.; Ferreira, P.H.; Yoo, R.; Harris, I.A.; Pinheiro, M.B.; Koes, B.W.; van Tulder, M.W.; Rzewuska, M.; Maher, C.G.; Ferreira, M.L. Surgical options for lumbar spinal stenosis. Cochrane Database Syst. Rev., 2016, 11, CD012421.
[4]
Boden, S.D. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine. Phila Pa, 1976, 2002(27), S26-S31.
[5]
Jacobs, W.; Van der Gaag, N.A.; Tuschel, A.; de Kleuver, M.; Peul, W.; Verbout, A.J.; Oner, F.C. Total disc replacement for chronic back pain in the presence of disc degeneration. Cochrane Database Syst. Rev., 2012, 9, CD008326.
[6]
Cammisa, F.P.; Lowery, G.; Garfin, S.R.; Geisler, F.H.; Klara, P.M.; McGuire, R.A.; Sassard, W.R.; Stubbs, H.; Block, J.E. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: A prospective controlled trial employing a side-by-side comparison in the same patient. Spine. Phila Pa, 1976, 2004(29), 660-666.
[7]
McGregor, A.H.; Probyn, K.; Cro, S.; Doré, C.J.; Burton, A.K.; Balagué, F.; Pincus, T.; Fairbank, J. Rehabilitation following surgery for lumbar spinal stenosis. Cochrane Database Syst. Rev., 2013, 12, CD009644.
[8]
Zaina, F.; Tomkins-Lane, C.; Carragee, E.; Negrini, S. Surgical versus non-surgical treatment for lumbar spinal stenosis. Cochrane Database Syst. Rev., 2016, 29, CD010264.
[9]
Machado, G.C.; Ferreira, P.H.; Harris, I.A.; Pinheiro, M.B.; Koes, B.W.; van Tulder, M.; Rzewuska, M.; Maher, C.G.; Ferreira, M.L. Effectiveness of surgery for lumbar spinal stenosis: A systematic review and meta-analysis. PLoS One, 2015, 10, e0122800.
[10]
Ammendolia, C.; Stuber, K.J.; Rok, E.; Rampersaud, R.; Kennedy, C.A.; Pennick, V.; Steenstra, I.A.; de Bruin, L.K.; Furlan, A.D. Nonoperative treatment for lumbar spinal stenosis with neurogenic claudication. Cochrane Database Syst. Rev., 2013, 8, CD010712.
[11]
Ammendolia, C.; Stuber, K.; Tomkins-Lane, C.; Schneider, M.; Rampersaud, Y.R.; Furlan, A.D.; Kennedy, C.A. What interventions improve walking ability in neurogenic claudication with lumbar spinal stenosis? A systematic review. Eur. Spine J., 2014, 23, 1282-1301.
[12]
Rajaee, S.S.; Bae, H.W.; Kanim, L.E.; Delamarter, R.B. Spinal fusion in the United States: Analysis of trends from 1998 to 2008. Spine. Phila Pa, 1976, 2012(37), 67-76.
[13]
Yavin, D.; Casha, S.; Wiebe, S.; Feasby, T.E.; Clark, C.; Isaacs, A.; Holroyd-Leduc, J.; Hurlbert, R.J.; Quan, H.; Nataraj, A.; Sutherland, G.R.; Jette, N. Lumbar fusion for degenerative disease: A systematic review and meta-analysis. Neurosurgery, 2017, 80, 701-715.
[14]
Duarte, R.M.; Vaccaro, A.R. Spinal infection: State of the art and management algorithm. Eur. Spine J., 2013, 22, 2787-2799.
[15]
Dahners, L.E.; Mullis, B.H. Effects of nonsteroidal anti-inflammatory drugs on bone formation and soft-tissue healing. J. Am. Acad. Orthop. Surg., 2004, 12, 139-143.
[16]
Malloy, K.M.; Hilibrand, A.S. Autograft versus allograft in degenerative cervical disease. Clin. Orthop. Relat. Res., 2002, (394), 27-38.
[17]
Fei, Q.; Li, J.; Lin, J.; Li, D.; Wang, B.; Meng, H.; Wang, Q.; Su, N.; Yang, Y. Risk factors for surgical site infection after spinal surgery: A meta-analysis. World Neurosurg., 2016, 95, 507-515.
[18]
Olsen, M.A.; Nepple, J.J.; Riew, K.D.; Lenke, L.G.; Bridwell, K.H.; Mayfield, J.; Fraser, V.J. Risk factors for surgical site infection following orthopaedic spinal operations. J. Bone Joint Surg. Am., 2008, 90, 62-69.
[19]
Meng, F.; Cao, J.; Meng, X. Risk factors for surgical site infections following spinal surgery. J. Clin. Neurosci., 2015, 22, 1862-1866.
[20]
Shields, L.B.E.; Clark, L.; Glassman, S.D.; Shields, C.B. Decreasing hospital length of stay following lumbar fusion utilizing multidisciplinary committee meetings involving surgeons and other caretakers. Surg. Neurol. Int., 2017, 8, 5.
[21]
McGregor, A.H.; Probyn, K.; Cro, S.; Doré, C.J.; Burton, A.K.; Balagué, F.; Pincus, T.; Fairbank, J. Rehabilitation following surgery for lumbar spinal stenosis. Cochrane Database Syst. Rev., 2013, 12, CD009644.
[22]
Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury, 2005, 36, S20-S27.
[23]
Burwell, R.G. The function of bone marrow in the incorporation of bone graft. Clin. Orth. Rel. Res., 1985, 200, 125-141.
[24]
Salama, R.; Weissman, S.L. The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report. J. Bone Joint Surg, 1978, 60, 111-115.
[25]
Begley, C.T.; Doherty, M.J.; Hankey, D.P.; Wilson, D.J. The culture of human osteoblasts upon bone graft substitutes. Bone, 1993, 14, 661-666.
[26]
Connolly, J.F.; Guse, R.; Tiedeman, J.; Dehne, R. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin. Orth., 1991, 266, 259-270.
[27]
Gibson, S.; McLeod, I.; Wardlaw, D.; Urbaniak, S. Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: A randomized control trial. Spine. Phila Pa, 1976, 2002(27), 1599-1603.
[28]
Samartzis, D.; Shen, F.H.; Goldberg, E.J.; An, H.S. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine. Phila Pa, 1976, 2005(30), 1756-1761.
[29]
Samartzis, D.; Shen, F.H.; Matthews, D.K.; Yoon, S.T.; Goldberg, E.J.; An, H.S. Comparison of allograft to autograft in multilevel anterior cervical discectomy and fusion with rigid plate fixation. Spine J., 2003, 3, 451-459.
[30]
Liao, Z.; Wang, C.H.; Cui, W.L. Comparison of allograft and autograft in lumbar fusion for lumbar degenerative diseases: A systematic review. J. Invest. Surg., 2016, 29, 373-382.
[31]
Tuchman, A.; Brodke, D.S.; Youssef, J.A.; Meisel, H.J.; Dettori, J.R.; Park, J.B.; Yoon, S.T.; Wang, J.C. Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: A systematic Review. Global Spine J., 2016, 6, 592-606.
[32]
France, J.C.; Schuster, J.M.; Moran, K.; Dettori, J.R. Iliac crest bone graft in lumbar fusion: The effectiveness and safety compared with local bone graft, and graft site morbidity comparing a single-incision midline approach with a two-incision traditional approach. Global Spine J., 2015, 5, 195-206.
[33]
Radcliff, K.; Hwang, R.; Hilibrand, A.; Smith, H.E.; Gruskay, J.; Lurie, J.D.; Zhao, W.; Albert, T.; Weinstein, J. The effect of iliac crest autograft on the outcome of fusion in the setting of degenerative spondylolisthesis: A subgroup analysis of the Spine Patient Outcomes Research Trial (SPORT). J. Bone Joint Surg. Am., 2012, 94, 1685-1692.
[34]
Tuchman, A.; Brodke, D.S.; Youssef, J.A.; Meisel, H.J.; Dettori, J.R.; Park, J.B.; Yoon, S.T.; Wang, J.C. Autograft versus allograft for cervical spinal fusion: A systematic review. Global Spine J., 2017, 7, 59-70.
[35]
Montgomery, D.M.; Aronson, D.D.; Lee, C.L.; LaMont, R.L. Posterior spinal fusion: Allograft versus autograft bone. J. Spinal Disord., 1990, 3, 370-375.
[36]
Wang, Y.; Zhang, Y.G.; Zhao, S.K.; Xiao, S.H.; Liu, Z.S.; Liu, B.W. Freeze-dried allograft of posterior spinal fusion in patients with scoliosis. Zhonghua Wai Ke Za Zhi, 2004, 42, 1178-1181.
[37]
Bishop, R.C.; Moore, K.A.; Hadley, M.N. Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: A prospective comparative analysis. J. Neurosurg., 1996, 85, 206-210.
[38]
Young, W.F.; Rosenwasser, R.H. An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine, 1993, 18, 1123-1124.
[39]
Savolainen, S.; Usenius, J.P.; Hernesniemi, J. Iliac crest versus artificial bone grafts in 250 cervical fusions. Acta Neurochir., (Wien), 1994, 129, 54-57.
[40]
Zhang, Z.H.; Yin, H.; Yang, K.; Zhang, T.; Dong, F.; Dang, G.; Lou, S.Q.; Cai, Q. Anterior intervertebral disc excision and bone grafting in cervical spondylotic myelopathy. Spine. (Phila Pa 1976), 1983, 8, 16-19.
[41]
Zdeblick, T.A.; Ducker, T.B. The use of freeze-dried allograft bone for anterior cervical fusions. Spine. Phila Pa, 1976, 1991(16), 726-729.
[42]
Jorgenson, S.S.; Lowe, T.G.; France, J.; Sabin, J. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine. Phila Pa, 1976, 1994(19), 2048-2053.
[43]
An, H.S.; Lynch, K.; Toth, J. Prospective comparison of autograft vs allograft for adult posterolateral lumbar spine fusion: Differences among freeze-dried, frozen, and mixed grafts. J. Spinal Disord., 1995, 8, 131-135.
[44]
Aurori, B.F.; Weierman, R.J.; Lowell, H.A.; Nadel, C.I.; Parsons, J.R. Pseudarthrosis after spinal fusion for scoliosis. A comparison of autogeneic and allogeneic bone grafts. Clin. Orthop. Relat. Res., 1985, (199), 153-158.
[45]
Dodd, C.A.; Fergusson, C.M.; Freedman, L.; Houghton, G.R.; Thomas, D. Allograft versus autograft bone in scoliosis surgery. J. Bone Joint Surg. Br., 1988, 70, 431-434.
[46]
Parthiban, J.K.; Singhania, B.K.; Ramani, P.S. A radiological evaluation of allografts (ethylene oxide sterilized cadaver bone) and autografts in anterior cervical fusion. Neurol. India, 2002, 50, 17-22.
[47]
Suchomel, P.; Barsa, P.; Buchvald, P.; Svobodnik, A.; Vanickova, E. Autologous versus allogenic bone grafts in instrumented anterior cervical discectomy and fusion: A prospective study with respect to bone union pattern. Eur. Spine J., 2004, 13, 510-515.
[48]
Buttermann, G.R. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J., 2008, 8, 426-435.
[49]
Kao, F.C.; Niu, C.C.; Chen, L.H.; Lai, P.L.; Chen, W.J. Maintenance of interbody space in one- and two-level anterior cervical interbody fusion: Comparison of the effectiveness of autograft, allograft, and cage. Clin. Orthop. Relat. Res., 2005, (430), 108-116.
[50]
Cammisa, F.P., Jr; Lowery, G.; Garfin, S.R.; Geisler, F.H.; Klara, P.M.; McGuire, R.A.; Sassard, W.R.; Stubbs, H.; Block, J.E. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: A prospective controlled trial employing a side-by-side comparison in the same patient. Spine. Phila Pa, 1976, 2004(29), 660-666.
[51]
Price, C.T.; Connolly, J.F.; Carantzas, A.C.; Ilyas, I. Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine. (Phila Pa 1976), 2003, 28, 793-798.
[52]
Berven, S.; Tay, B.K.; Kleinstueck, F.S.; Bradford, D.S. Clinical applications of bone graft substitutes in spine surgery: Consideration of mineralized and demineralized preparations and growth factor supplementation. Eur. Spine J., 2001, 10, S169-S177.
[53]
Chalmers, J.; Gray, D.H.; Rush, J. Observations on the induction of bone in soft tissues. J. Bone Joint Surg. Br., 1975, 57, 36-45.
[54]
Dahners, L.E.; Jacobs, R.R. Long bone defects treated with demineralized bone. South. Med. J., 1985, 78, 933-934.
[55]
Han, B.; Tang, B.; Nimni, M.E. Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix. J. Orthop. Res., 2003, 21, 648-654.
[56]
Oakes, D.A.; Lee, C.C.; Lieberman, J.R. An evaluation of human demineralized bone matrices in a rat femoral defect model. Clin. Orthop. Relat. Res., 2003, (413), 281-290.
[57]
Takikawa, S.; Bauer, T.W.; Kambic, H.; Togawa, D. Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix. J. Biomed. Mater. Res. A, 2003, 65, 37-42.
[58]
Peterson, B.; Whang, P.G.; Iglesias, R.; Wang, J.C.; Lieberman, J.R. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J. Bone Joint Surg. Am., 2004, 86-A, 2243-2250.
[59]
Lee, Y.P.; Jo, M.; Luna, M.; Chien, B.; Lieberman, J.R.; Wang, J.C. The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J. Spinal Disord. Tech., 2005, 18, 439-444.
[60]
Wildemann, B.; Kadow-Romacker, A.; Haas, N.P.; Schmidmaier, G. Quantification of various growth factors in different demineralized bone matrix preparations. J. Biomed. Mater. Res. A, 2007, 81, 437-442.
[61]
Brown, M.D.; Malinin, T.; Davis, P.B. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clin. Orthop. Relat. Res., 1976, 119, 231-236.
[62]
Urist, M.R. Bone: Formation by autoinduction. Science, 1965, 150, 893-899.
[63]
Buring, K.; Urist, M.R. Effects of ionizing radiation on the bone induction principle in the matrix of bone implants. Clin. Orthop. Relat. Res., 1967, 55, 225-234.
[64]
Dubuc, F.L.; Urist, M.R. The accessibility of the bone induction principle in surface-decalcified bone implants. Clin. Orthop. Relat. Res., 1967, 55, 217-223.
[65]
Urist, M.R.; Silverman, B.F.; Büring, K.; Dubuc, F.L.; Rosenberg, J.M. The bone induction principle. Clin. Orthop. Relat. Res., 1967, (53), 243-283.
[66]
Jones, C.B. Biological basis of fracture healing. J. Orthop. Trauma, 2005, 19, S1-S3.
[67]
Guizzardi, S.; Di Silvestre, M.; Scandroglio, R.; Ruggeri, A.; Savini, R. Implants of heterologous demineralized bone matrix for induction of posterior spinal fusion in rats. Spine, 1992, 17, 701-707.
[68]
Bae, H.W.; Zhao, L.; Kanim, L.E.; Wong, P.; Delamarter, R.B.; Dawson, E.G. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine. (Phila Pa 1976), 2006, 31, 1299-1306.
[69]
An, H.S.; Simpson, J.M.; Glover, J.M.; Stephany, J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicentre study. Spine. (Phila Pa 1976), 1995, 20, 2211-2216.
[70]
Vaidya, R.; Carp, J.; Sethi, A.; Bartol, S.; Craig, J.; Les, C.M. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur. Spine J., 2007, 16, 1257-1265.
[71]
Park, H.W.; Lee, J.K.; Moon, S.J.; Seo, S.K.; Lee, J.H.; Kim, S.H. The efficacy of the synthetic interbody cage and Grafton for anterior cervical fusion. Spine. (Phila Pa 1976), 2009, 34, E591-E595.
[72]
Topuz, K.; Colak, A.; Kaya, S.; Simşek, H.; Kutlay, M.; Demircan, M.N.; Velioğlu, M. Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur. Spine J., 2009, 18, 238-243.
[73]
Moon, H.J.; Kim, J.H.; Kim, J.H.; Kwon, T.H.; Chung, H.S.; Park, Y.K. The effects of anterior cervical discectomy and fusion with stand-alone cages at two contiguous levels on cervical alignment and outcomes. Acta Neurochir. , 2011, 153, 559-565. [Wien].
[74]
Demircan, M.N.; Kutlay, A.M.; Colak, A.; Kaya, S.; Tekin, T.; Kibici, K.; Ungoren, K. Multilevel cervical fusion without plates, screws or autogenous iliac crest bone graft. J. Clin. Neurosci., 2007, 14, 723-728.
[75]
Kang, J.; An, H.; Hilibrand, A.; Yoon, S.T.; Kavanagh, E.; Boden, S. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine. (Phila Pa 1976), 2012, 37, 1083-1091.
[76]
Vaccaro, A.R.; Stubbs, H.A.; Block, J.E. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics, 2007, 30, 567-570.
[77]
Sassard, W.R.; Eidman, D.K.; Gray, P.M.; Block, J.E.; Russo, R.; Russell, J.L.; Taboada, E.M. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: Avoiding second site autologous bone harvest. Orthopedics, 2000, 23, 1059-1064.
[78]
Schizas, C.; Triantafyllopoulos, D.; Kosmopoulos, V.; Tzinieris, N.; Stafylas, K. Posterolateral lumbar spine fusion using a novel demineralized bone matrix: A controlled case pilot study. Arch. Orthop. Trauma Surg., 2008, 128, 621-625.
[79]
Epstein, N.E.; Epstein, J.A. SF-36 outcomes and fusion rates after multilevel laminectomies and 1 and 2-level instrumented posterolateral fusions using lamina autograft and demineralized bone matrix. J. Spinal Disord. Tech., 2007, 20, 139-145.
[80]
Thalgott, J.S.; Giuffre, J.M.; Klezl, Z.; Timlin, M. Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J., 2002, 2, 63-69.
[81]
Girardi, F.P.; Cammisa, F.P. The effect of bone graft extenders to enhance the performance of iliac crest bone grafts in instrumented lumbar spine fusion. Orthopedics, 2003, 26, s545-s548.
[82]
Thalgott, J.S.; Giuffre, J.M.; Fritts, K.; Timlin, M.; Klezl, Z. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J., 2001, 1, 131-137.
[83]
Epstein, N.E. Fusion rates and SF-36 outcomes after multilevel laminectomy and noninstrumented lumbar fusions in a predominantly geriatric population. J. Spinal Disord. Tech., 2008, 21, 159-164.
[84]
Wozney, J.M. Overview of bone morphogenetic proteins. Spine. (Phila Pa 1976), 2002, 27, S2-S8.
[85]
Mehler, M.F.; Mabie, P.C.; Zhang, D.; Kessler, J.A. Bone morphogenetic proteins in the nervous system. Trends Neurosci., 1997, 20, 309-317.
[86]
Zhang, H.; Wang, F.; Ding, L.; Zhang, Z.; Sun, D.; Feng, X.; An, J. 2.; Zhu, Y. A meta analysis of lumbar spinal fusion surgery using bone morphogenetic proteins and autologous iliac crest bone graft. PLoS One, 2014, 9, e97049.
[87]
Noshchenko, A.; Hoffecker, L.; Lindley, E.M.; Burger, E.L.; Cain, C.M.; Patel, V.V. Perioperative and long-term clinical outcomes for bone morphogenetic protein versus iliac crest bone graft for lumbar fusion in degenerative disk disease: Systematic review with meta-analysis. J. Spinal Disord. Tech., 2014, 27, 117-135.
[88]
Chen, Z.; Ba, G.; Shen, T.; Fu, Q. Recombinant human bone morphogenetic protein-2 versus autogenous iliac crest bone graft for lumbar fusion: A meta-analysis of ten randomized controlled trials. Arch. Orthop. Trauma Surg., 2012, 132, 1725-1740.
[89]
Ye, F.; Zeng, Z.; Wang, J.; Liu, H.; Wang, H.; Zheng, Z. Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: A meta-analysis of randomized controlled trials. J. Bone Miner. Metab., 2018, 36, 119-127.
[90]
Baskin, D.S.; Ryan, P.; Sonntag, V.; Westmark, R.; Widmayer, M.A. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine, 2003, 28, 1219-1224.
[91]
Shields, L.B.; Raque, G.H.; Glassman, S.D.; Campbell, M.; Vitaz, T.; Harpring, J.; Shields, C.B. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine, 2006, 31, 542-547.
[92]
Vaidya, R.; Carp, J.; Sethi, A.; Bartol, S.; Craig, J.; Les, C.M. Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur. Spine J., 2007, 16, 1257-1265.
[93]
Boden, S.D.; Zdeblick, T.A.; Sandhu, H.S.; Heim, S.E. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: A preliminary report. Spine, 2000, 25, 376-381.
[94]
Burkus, J.K.; Dorchak, J.D.; Sanders, D.L. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine, 2003, 28, 372-377.
[95]
Burkus, J.K.; Gornet, M.F.; Dickman, C.A.; Zdeblick, T.A. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J. Spinal Disord. Tech., 2002, 15, 337-349.
[96]
Burkus, J.K.; Transfeldt, E.E.; Kitchel, S.H.; Watkins, R.G.; Balderston, R.A. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine, 2002, 27, 2396-2408.
[97]
Slosar, P.J.; Josey, R.; Reynolds, J. Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: A prospective analysis of interbody fusion rates and clinical outcomes. Spine J., 2007, 7, 301-307.
[98]
McClellan, J.W.; Mulconrey, D.S.; Forbes, R.J.; Fullmer, N. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J. Spinal Disord. Tech., 2006, 19, 83-486.
[99]
Pradhan, B.B.; Bae, H.W.; Dawson, E.G.; Patel, V.V.; Delamarter, R.B. Graft resorption with the use of bone morphogenetic protein: Lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine J., 2006, 31, E277-E284.
[100]
Dimar, J.R.; Glassman, S.D.; Burkus, K.J.; Carreon, L.Y. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine, 2006, 31, 2534-2539.
[101]
Park, D.K.; Kim, S.S.; Thakur, N.; Boden, S.D. Use of recombinant human bone morphogenetic protein-2 with local bone graft instead of iliac crest bone graft in posterolateral lumbar spine arthrodesis. Spine. (Phila Pa 1976), 2013, 38, E738-E747.
[102]
Singh, K.; Smucker, J.D.; Gill, S.; Boden, S.D. Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: A prospective CT-scan analysis at one and two years. J. Spinal Disord. Tech., 2006, 19, 416-423.