[1]
Cobo, A.; Sheybani, R.; Meng, E. MEMS: Enabled drug delivery systems. Adv. Healthc. Mater., 2015, 4(7), 969-982.
[2]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[3]
Mathias, N.R.; Hussain, M.A. Non-invasive systemic drug delivery: Developability considerations for alternate routes of administration. J. Pharm. Sci., 2010, 99(1), 1-20.
[4]
Ye, D.; Zhang, X.; Yue, Y.; Raliya, R.; Biswas, P.; Taylor, S.; Tai, Y.C.; Rubin, J.B.; Liu, Y.; Chen, H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J. Control. Release, 2018, 286, 145-153.
[5]
Robinson, A.; Wermeling, D.P. Intranasal naloxone administration for treatment of opioid overdose. Am. J. Health Syst. Pharm., 2014, 71(24), 2129-2135.
[6]
Lai, K.L.; Fang, Y.; Han, H.; Li, Q.; Zhang, S.; Li, H.Y.; Chow, S.F.; Lam, T.N.; Lee, W.Y.T. Orally-dissolving film for sublingual and buccal delivery of ropinirole. Colloids Surf. B Biointerfaces, 2018, 163, 9-18.
[7]
Song, Q.; Shen, C.; Shen, B.; Lian, W.; Liu, X.; Daia, B.; Yuan, H. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J. Drug Deliv. Sci. Technol., 2018, 43, 243-252.
[8]
Lane, M.E. The transdermal delivery of fentanyl. Eur. J. Pharm. Biopharm., 2013, 84(3), 449-455.
[9]
Jung, E.; Kang, Y.P.; Yoon, I.S.; Kim, J.S.; Kwon, S.W.; Chung, S.J.; Shim, C.K.; Kim, D.D. Effect of permeation enhancers on transdermal delivery of fluoxetine: In vitro and in vivo evaluation. Int. J. Pharm., 2013, 456(2), 362-369.
[10]
Hu, Q.; Chen, Q.; Gu, Z. Advances in transformable drug delivery systems. Biomaterials, 2018, 178, 546-558.
[11]
Matoba, T.; Egashira, K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int. Heart J., 2014, 55(4), 281-286.
[12]
Jin, X.; Zhou, B.; Xue, L.; San, W. Soluplus(®) micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother., 2015, 69, 388-395.
[13]
Campani, V.; Marchese, D.; Pitaro, M.T.; Pitaro, M.; Grieco, P.; De Rosa, G. Development of a liposome-based formulation for vitamin K1 nebulization on the skin. Int. J. Nanomedicine, 2014, 9, 1823-1832.
[14]
Nomani, A.; Nosrati, H.; Manjili, H.K.; Khesalpour, L.; Danafar, H. Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res., 2017, 67(8), 458-465.
[15]
Nosrati, H.; Adinehvand, R.; Manjili, H.K.; Rostamizadeh, K.; Danafar, H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm. Dev. Technol., 2018, 18, 1-10.
[16]
Rostamizadeh, K.; Manafi, M.; Nosrati, H.; Manjilia, H.K.; Danafar, H. Methotrexate-conjugated mPEG-PCL copolymers: A novel approach for dual triggered drug delivery. New J. Chem., 2018, 42, 5937-5945.
[17]
Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Manjili, H.K.; Davaran, S.; Danafar, H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol., 2018, 115, 83-89.
[18]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, H.K. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[19]
Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol., 2018, 108, 909-915.
[20]
Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Manjili, H.K. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(8), 1377-1384.
[21]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Ramazani, A.; Manjili, H.K.; Danafar, H. New advances strategies for surface functionalizationof iron oxide magnetic nano particles (IONPs). Res. Chem. Intermed., 2017, 43(12), 7423-7442.
[22]
Nosrati, H.; Mojtahedi, A.; Danafar, H.; Manjili, H.K. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res. A, 2018, 106(6), 1646-1654.
[23]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2017, 27, 1-9.
[24]
Nosrati, H.; Rashidi, N.; Danafar, H.; Manjili, H.K. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater., 2017, 28(3), 1178-1186.
[25]
Salehiabar, M.; Nosrati, H.; Davaran, S.; Danafar, H.; Manjili, H.K. Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res., 2018, 68(5), 280-285.
[26]
Alexander, A.; Dwivedi, S. Ajazuddin.; Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Realease, 2012, 164, 26-40.
[27]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[28]
Wiedersberg, S.; Guy, R.H. Transdermal drug delivery: 30 + years of war and still fighting! J. Control. Releas, 2014, 190, 150-156.
[29]
Lane, M.E.; Woods, R.A. Skin penetration enhancers. Int. J. Pharm., 2013, 447, 12-21.
[30]
Lunter, D.; Daniels, R. Confocal Raman microscopic investigation of the effectiveness of penetration enhancers for procaine delivery to the skin. J. Biomed. Opt., 2014, 19(12), 126015.
[31]
Polonini, H.C.; Soldati, P.P.; Oliveira, M.A.; Brandão, M.A.; Chaves, M.G.; Raposo, N.R. Transdermal formulation containing human sexual steroids: Development and validation of methods and in vitro drug release. Quim. Nova, 2014, 37(4), 720-727.
[32]
Bourdon, F.; Lecoeur, M.; Leconte, L.; Ultré, V.; Kouach, M.; Odou, P.; Vaccher, C.; Foulon, C. Evaluation of Pentravan®, Pentravan® Plus, Phytobase®, Lipovan® and Pluronic Lecithin Organogel for the transdermal administration of antiemetic drugs to treat chemotherapy-induced nausea and vomiting at the hospital. Int. J. Pharm., 2016, 515, 774-787.
[33]
Carmona-Moran, C.A.; Zavgorodnya, O.; Penman, A.D.; Kharlampieva, E.; Bridges, Jr. , S.L.; Hergenrother, R.W.; Singh, J.A.; Wick, T.M. Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels. Int. J. Pharm., 2016, 509, 465-476.
[34]
Polonini, H.C.; Brandão, M.A.; Ferreira, A.O.; Ramos, C.; Raposo, N.R. Evaluation of percutaneous absorption performance for human female sexual steroids into pentravan cream. Int. J. Pharm. Compd., 2014, 18(4), 332-340.
[35]
Silva, J.A.; A.C., Apolinário. A.C.; Souza, M.S.; Damasceno, B.P.; Medeiros, A.C. Administração cutânea de fármacos: Desafios e estratégias para o desenvolvimento de formulações transdérmicas. Rev. Cienc. Farm. Basica Apl., 2010, 31(3), 125-131.
[36]
Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci., 2015, 75, 10-24.
[37]
Planz, V.; Lehr, C.M.; Windbergs, M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J. Control. Release, 2016, 242, 89-104.
[38]
Pereira, R.O.; Silva, T.C.C.P.E.; Ferreira, A.O.; Brandão, M.A.F.; Raposo, N.R.B.; Polonini, H.C. Ex vivo skin permeation evaluation of an innovative transdermal vehicle using nimesulide and piroxicam as model drugs. Curr. Drug Deliv., 2017, 14, 516-520.
[39]
Polonini, H.C.; Bastos, C.A.; Oliveira, M.A.; Silva, C.G.; Collins, C.H.; Brandão, M.A.; Raposo, N.R. In vitro drug release and ex vivo percutaneous absorption of resveratrol cream using HPLC with zirconized silica stationary phase. J. Chromatogr. B., 2014, 947, 23-31.
[40]
Davis, R.; Batur, P.; Thacker, H.L. Risks and effectiveness of compounded bioidentical hormone therapy: A case series. J. Womens Health., 2014, 23(8), 642-648.
[41]
Rençber, S.; Karavana, S.Y.; Özyazici, M. Bioavailability file: Ketoprofen. FABAD J. Pharm. Sci., 2009, 34, 203-216.
[42]
Elgindy, N.A.; Mehanna, M.M.; Mohyeldin, S.M. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int. J. Pharm., 2016, 501, 167-179.
[43]
Zhang, J.; Michniak-Kohn, B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: Ketoprofen, lidocaine, and caffeine. Int. J. Pharm., 2011, 421, 34-44.