Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Chemical Constituents Isolated from Rhododendron ungernii with Antioxidant Profile

Author(s): Emine Dede, Nusret Genc, Mahfuz Elmastas, Huseyin Aksit and Ramazan Erenler*

Volume 9, Issue 3, 2019

Page: [238 - 243] Pages: 6

DOI: 10.2174/2210315508666181024114812

Price: $65

conference banner
Abstract

Background: Plant in Rhododendron genus that contains phenolic compounds has been used in traditional medicine and revealed considerable biological activities.

Objective: Isolation and identification of antioxidant natural products from Rhododendron ungernii.

Methods: Rhododendron ungernii Trautv. flowers were collected and dried in shade. The dried flowers were extracted with methanol for 3 days. The solvent was removed by reduced pressure to yield the extract which was subjected to column chromatography (Sephadex LH-20, C18 reversed phase column) to isolate catechin-7-O-glucoside (1), quercetin-3-O-β-galactoside (2), quercetin-3-O- β-xyloside (3), farrerol (4), myricetin (5), and quercetin (6). The structures of isolated compounds were elucidated by spectroscopic methods such as 1D-NMR, 2D-NMR, and LC-TOF/MS. DPPH• scavenging effect, ABTS•+ scavenging activity, and reducing power (FRAP) were performed for antioxidant assays of isolated natural compounds.

Results: Isolated flavonoids displayed the outstanding antioxidant activities. Catechin-7-O-glucoside (1) and quercetin-3-O-β-galactoside (2) (IC50, 3.66 µg/mL) had the most DPPH• scavenging effect among the compounds. The highest ABTS•+ scavenging activity (IC50, 1.41 µg/mL) and reducing power effect (6.05 mmol TE/g comp) were observed for myricetin (5).

Conclusion: R. ungernii extract and isolated compounds could be a promising antioxidant for food and pharmaceutical industries.

Keywords: Rhododendron ungernii, antioxidant, active compounds, flavonoids, phenolic compounds, biological activities.

Graphical Abstract

[1]
Karan, T.; Erenler, R. Screening of norharmane from seven cyanobacteria by high-performance liquid chromatography. Pharmacogn. Mag., 2017, 13(Suppl. 3), 723-725.
[2]
Karan, T.; Erenler, R. Effect of salt and pH stress of bioactive metabolite production in Geitlerinema carotinosum. Int. J. Sec. Metabol., 2017, 4(3), 16-19.
[3]
Erenler, R.; Demirtas, I.; Karan, T.; Altun, M.; Gul, F. Inhibitory effect of 6, 7-dimethoxy-5-hydroxyflavone on human cervix carcinoma in vitro. Int. J. Sec. Metabol., 2017. 4(3, Special Issue 2), 512-516.
[4]
Karan, T.; Yildiz, I.; Aydin, A.; Erenler, R. Inhibition of various cancer cells proliferation of bornyl acetate and essential oil from Inula graveolens (Linnaeus) Desf. Rec. Nat. Prod., 2018, 12(3), 273-283.
[5]
Karan, T.; Erenler, R.; Altuner, Z. Isolation and molecular identification of some blue-green algae (Cyanobacteria) from freshwater sites in Tokat Province of Turkey. Turk. J. Agricul. Food Sci. Tech., 2017, 5(11), 1371-1378.
[6]
Elmastas, M.; Erenler, R.; Isnac, B.; Aksit, H.; Sen, O.; Genc, N.; Demirtas, I. Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L. Nat. Prod. Res., 2016, 30(3), 299-304.
[7]
Erenler, R.; Pabuccu, K.; Yaglioglu, A.S.; Demirtas, I.; Gul, F. Chemical constituents and antiproliferative effects of cultured Mougeotia nummuloides and Spirulina major against cancerous cell lines. Z. Naturforsch. C, 2016, 71(3-4), 87-92.
[8]
Erenler, R.; Sen, O.; Yaglioglu, A.S.; Demirtas, I. Bioactivity-guided isolation of antiproliferative sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Comb. Chem. High Throughput Screen., 2016, 19(1), 66-72.
[9]
Erenler, R.; Sen, O.; Yildiz, I.; Aydin, A. Antiproliferative activities of chemical constituents isolated from Thymus praecox subsp grossheimii (Ronniger) Jalas. Rec. Nat. Prod., 2016, 10(6), 766-770.
[10]
Erenler, R.; Adak, T.; Karan, T.; Elmastas, M.; Yildiz, I.; Aksit, H.; Topcu, G.; Sanda, M.A. Chemical constituents isolated from Origanum solymicum with antioxidant activitites. Eur Proc. Sci. Tech. Eng. Math., 2017, 1, 139-145.
[11]
Erenler, R.; Yılmaz, B.; Tekin, Ş. Antiproliferative effect of cherry laurel. J. Turk. Chem. Soc. Sec A: Chem, 2016, 3(3), 217-228.
[12]
Elmastaş, M.; Telci, İ.; Akşit, H.; Erenler, R. Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices/Baharat olarak kullanılan nane genotiplerinin toplam fenolik içerikleri ve antioksidan kapasitelerinin karşılaştırılması. Turk. J. Biochem., 2015, 40(6), 456-462.
[13]
Aksit, H.; Çelik, S.M.; Sen, Ö.; Erenler, R.; Demirtas, I.; Telci, I.; Elmastas, M. Complete isolation and characterization of polar portion of Mentha dumetorum water extract. Rec. Nat. Prod., 2014, 8(3), 277-280.
[14]
Yaglıoglu, A.S.; Akdulum, B.; Erenler, R.; Demirtas, I.; Telci, I.; Tekin, S. Antiproliferative activity of pentadeca-(8E, 13Z) dien-11-yn-2-one and (E)-1,8-pentadecadiene from Echinacea pallida (Nutt.) Nutt. roots. Med. Chem. Res., 2012, 22(6), 2946-2953.
[15]
Sakai, A.; Fuchigami, L.; Weiser, C. Cold hardiness in the genus rhododendron. J. Am. Soc. Hortic. Sci., 1986, 111(2), 273-280.
[16]
Terzioglu, S.; Merev, N.; Ansin, R. A study on Turkish Rhododendron L. (Ericaceae). Turk. J. Agric. For., 2001, 25(5), 311-317.
[17]
Popescu, R.; Kopp, B. The genus rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol., 2013, 147(1), 42-62.
[18]
Qiang, Y.; Zhou, B.; Gao, K. Chemical constituents of plants from the genus rhododendron. Chem. Biodivers., 2011, 8(5), 792-815.
[19]
Kemertelidze, E.; Shalashvili, K.; Korsantiya, B.; Nizharadze, N.; Chipashvili, N.S. Therapeutic effect of phenolic compounds isolated from Rhododendron ungernii leaves. Pharm. Chem. J., 2007, 41(1), 10-13.
[20]
Karchkhadze, M. KOmissarenko, N.; Kemertelidze, É. Phenolic compounds of Rhododendron ungernii. Chem. Nat. Compd., 1973, 9(3), 405-405.
[21]
Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol., 2012, 86(3), 345-391.
[22]
Erenler, R.; Meral, B.; Sen, O.; Elmastas, M.; Aydin, A.; Eminagaoglu, O.; Topcu, G. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm. Biol., 2017, 55(1), 1646-1653.
[23]
Erenler, R.; Sen, O.; Aksit, H.; Demirtas, I.; Yaglioglu, A.S.; Elmastas, M.; Telci, İ. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J. Sci. Food Agric., 2016, 96(3), 822-836.
[24]
Erenler, R.; Yilmaz, S.; Aksit, H.; Sen, O.; Genc, N.; Elmastas, M.; Demirtas, I. Antioxidant activities of chemical constituents isolated from Echinops orientalis Trauv. Rec. Nat. Prod., 2014, 8(1), 32-36.
[25]
Sasaki, Y.F.; Kawaguchi, S.; Kamaya, A.; Ohshita, M.; Kabasawa, K.; Iwama, K.; Taniguchi, K.; Tsuda, S. The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2002, 519(1), 103-119.
[26]
Elmastas, M.; Ozturk, L.; Gokce, I.; Erenler, R.; Aboul-Enein, H.Y. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal. Lett., 2004, 37(9), 1859-1869.
[27]
Rameshrad, M.; Razavi, B.M.; Hosseinzadeh, H. Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review. Food Chem. Toxicol., 2017, 100, 115-137.
[28]
Formica, J.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[29]
Singleton, V.L.; Slinkard, K. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic., 1977, 28(1), 49-55.
[30]
Erenler, R.; Telci, I.; Ulutas, M.; Demirtas, I.; Gul, F.; Elmastas, M.; Kayir, O. Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt. J. Food Biochem., 2015, 39(5), 622-630.
[31]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(26), 1199-1200.
[32]
Demirtas, I.; Erenler, R.; Elmastas, M.; Goktasoglu, A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem., 2013, 136(1), 34-40.
[33]
Benavides, A.; Montoro, P.; Bassarello, C.; Piacente, S.; Pizza, C. Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali-quantitative analysis. J. Pharmaceut. Biomed., 2006, 40(3), 639-647.
[34]
Cui, E.J.; Song, N.Y.; Shrestha, S.; Chung, I.S.; Kim, J.Y.; Jeong, T.S.; Baek, N.I. Flavonoid glycosides from cowpea seeds (Vigna sinensis K.) inhibit LDL oxidation. Food Sci. Biotechnol., 2012, 21(2), 619-624.
[35]
Zhu, Y.; Liu, Y.; Zhan, Y.; Liu, L.; Xu, Y.; Xu, T.; Liu, T. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by High-Speed Counter-Current Chromatography (HSCCC). Molecules, 2013, 18(12), 15648-15661.
[36]
Lai, Y.; Zeng, H.; He, M.; Qian, H.; Wu, Z.; Luo, Z.; Xue, Y.; Yao, G.; Zhang, Y. 6, 8-Di-C-methyl-flavonoids with neuroprotective activities from Rhododendron fortunei. Fitoterapia, 2016, 112, 237-243.
[37]
He, D.; Gu, D.; Huang, Y.; Ayupbek, A.; Yang, Y.; Aisa, H.A.; Ito, Y. Separation and purification of phenolic acids and myricetin from black currant by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol., 2009, 32(20), 3077-3088.
[38]
Kyriakou, E.; Primikyri, A.; Charisiadis, P.; Katsoura, M.; Gerothanassis, I.P.; Stamatis, H.; Tzakos, A.G. Unexpected enzyme-catalyzed regioselective acylation of flavonoid aglycones and rapid product screening. Org. Biomol. Chem., 2012, 10(9), 1739-1742.
[39]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[40]
Apak, R.; Güclü, K.; Özyürek, M.; Celik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Mikrochim. Acta, 2008, 160(4), 413-419.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy