Review Article

分子对接:药物发现的挑战、进展及其应用前景

卷 20, 期 5, 2019

页: [501 - 521] 页: 21

弟呕挨: 10.2174/1389450119666181022153016

价格: $65

摘要

分子对接是一个将小分子对接到大分子结构中,在结合位点上获取其互补值的过程。它是一个充满活力的研究领域,在基于结构的药物设计、铅优化、生化途径和药物设计等方面具有动态实用性,是最具吸引力的工具。成功对接实验的两个支柱是正确的姿态和亲和力预测。每个程序在对接精度、排序精度和时间消耗等方面都有其自身的优缺点,因此无法得出一般结论。此外,用户并不总是认为他们的测试集有足够的多样性,这会导致某些程序优于其他程序。在这篇综述中,重点讨论了对接和故障诊断人员在现有程序中面临的挑战、对接的基本算法背景、关于使用对接程序以获得最佳结果的摘要(举例说明)、现有工具和算法的性能比较、对接的最新技术、最近的测试结果。讨论了疾病和当代药物工业的结束、临床试验和上市后监测的证据。分子药物设计范式的这些方面具有很大的争议和挑战性,本综述将是生物信息学和药物设计界的一项宝贵财富。

关键词: 分子对接,算法,评分函数,分子动力学,药理学,药物设计。

图形摘要

[1]
Turner PR, Denny WA. The Genome as a Drug Target: Sequence specific minor groove binding ligands. Curr Drug Targets 2000; 1: 1-14.
[2]
Jorgensen WL. The many roles of computation in drug discovery. Science 2004; 303(5665): 1813-8.
[3]
Berman HM. The protein data bank. Nucleic Acids Res 2000; 28: 235-42.
[4]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162: 1239-49.
[5]
Boehm HJ, Boehringer M, Bur D, et al. Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 2000; 43(14): 2664-74.
[6]
Shih-Jen L, Fok-Ching C. Combining molecular docking and molecular dynamics to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 h1n1 influenza a virus. Int J Mol Sci 2012; 13: 4496-507.
[7]
Kumar RG, Sahu S, Sonkar KS, Debnath M, Kumar A. Modeling and Molecular docking studies on RNAseaspergillusniger and leishmaniadonovani actin: antileishmanial activity. Am J Biochem Biotechnol 2013; 9(3): 318-28.
[8]
López-Vallejo F, Caulfield T, Martínez-Mayorga K, et al. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screen 2011; 14: 475-87.
[9]
Coleman RG, Carchia M, Sterling T, Irwin JJ, Shoichet BK. Ligand pose and orientational sampling in molecular docking. PLoS One 2013; 8(10): e75992.
[10]
Wang R, Lu Y, Fang X, Wang S. An extensive test of 14 scoring functions using the pdbbind refined set of 800 protein-ligand complexes. J Chem Inf Comput Sci 2004; 44: 2114-25.
[11]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004; 3: 935-49.
[12]
Dastmalchi S, Hamzeh-Mivehroud M, Sokouti B. Methods and algorithms for molecular docking-based drug design and discovery. Hershey, PA: IGI Global 2016; pp. 1-456.
[13]
De Vivo M, Cavalli A. Recent advances in dynamic docking for drug discoveryWIREs Comput Mol Sci 2017, e1320
[14]
Qing X, Lee XY, De Raeymaecker J, et al. Pharmacophore modeling: advances, limitations, and current utility in drug discovery. J Receptor Ligand Channel 2014; 7: 81-92.
[15]
Zhang Q, Feng T, Xu L, et al. Recent advances in protein-protein docking. Curr Drug Targets 2016; 17(14): 1586-94.
[16]
Krüger J, Thiel P, Merelli I, Grunzke R, Gesing S. Portals and web-based resources for virtual screening. Curr Drug Targets 2016; 17(14): 1649-60.
[17]
de Azevedo WF. Targeting multiple cyclin-dependent kinases (cdks): a new strategy for molecular docking studies. Curr Drug Targets 2016; 17(1): 2.
[18]
Chiappori F, Milanesi L, Merelli I. HPC. Analysis of multiple binding sites communication and allosteric modulations in drug design: The HSP Case Study. Curr Drug Targets 2016; 17(14): 1610-25.
[19]
Abdolmaleki A, Ghasemi JB, Ghasemi F. Computer aided drug design for multi-target drug design: SAR /QSAR, molecular docking and pharmacophore methods. Curr Drug Targets 2017; 18(5): 556-75.
[20]
Scotti L, Mendonca FJ Junior, Ishiki HM, et al. Docking studies for multi-target drugs. Curr Drug Targets 2017; 18(5): 592-604.
[21]
Cardamone F, Pizzi S, Iacovelli F, Falconi M, Desideri A. Virtual screening for the development of dual-inhibitors targeting topoisomerase ib and tyrosyl-dna phosphodiesterase 1. Curr Drug Targets 2017; 18(5): 544-55.
[22]
Ganai SA. Designing isoform-selective inhibitors against Classical HDACs for effective anticancer therapy: Insight and perspectives from in silico. Curr Drug Targets 2018; 19(7): 815-24.
[23]
Maggio ET, Ramnarayan K. Recent developments in computational proteomics. Trends Biotechnol 2001; 19: 266-72.
[24]
Abagyan R, Totrov M. High-throughput docking for lead generation. Curr Opin Chem Biol 2001; 5: 375-82.
[25]
Branden C, Tooze J. 1991 Introduction to Protein StructureGarland Publishing New York, London.
[26]
Koshland D. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 1958; 44: 98.
[27]
Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965; 12: 88-118.
[28]
Pennec X, Ayache N. A geometric algorithm to find small but highly similar 3D substructures in proteins. Bioinformatics 1998; 14(6): 516-22.
[29]
Teague SJ. Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2003; 2(7): 527-39.
[30]
Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit 2011; 24: 149-64.
[31]
Guedes IA, de Magalhães CS, Dardenne LE. Receptor–ligand molecular docking. Biophys Rev 2014; 6: 75.
[32]
Buonfiglio R, Recanatini M, Masetti M. Protein flexibility in drug discovery: From theory to computation. ChemMedChem 2015; 10: 1141-8.
[33]
Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochem 2011; 50: 6157-69.
[34]
Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL III. Assessing scoring functions for protein ligand interactions. J Med Chem 2004; 47: 3032-47.
[35]
Feixas F, Lindert S, Sinko W, McCammon JA. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys Chem 2014; 186: 31-45.
[36]
Petrone P, Pande VS. Can conformational change be described by only a few normal modes? Biophys J 2006; 90: 1583-93.
[37]
Cavasotto CN, Kovacs JA, Abagyan RA. Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 2005; 127: 9632-40.
[38]
Cukier RI. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis. J Phys Chem B 2009; 113: 1662-72.
[39]
Ferrari AM, Wei BQ, Costantino L, Shoichet BK. Soft docking and multiple receptor conformations in virtual screening. J Med Chem 2004; 47: 5076-84.
[40]
B-Rao C. Subramanian J, Sharma SD. Managing protein flexibility in docking and its applications. Drug Discov Today 2009; 14: 394-400.
[41]
Beier C, Zacharias M. Tackling the challenges posed by target flexibility in drug design. Expert Opin Drug Discov 2010; 5: 347-59.
[42]
Feixas F, Lindert S, Sinko W, McCammon JA. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys Chem 2014; 186: 31-45.
[43]
Davis IW, Baker D. RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 2009; 385: 381-92.
[44]
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol 1982; 161(2): 269-88.
[45]
Kuntz ID, Leach AR. Conformational analysis of flexible ligands in macromolecular receptor sites. J Comput Chem 1992; 13: 730-48.
[46]
Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 2001; 15(5): 411-28.
[47]
Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science 1993; 259(5100): 1445-50.
[48]
Gabb HA, Jackson RM, Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997; 272(1): 106-20.
[49]
Sherman W, Day T, Jacobson MP, et al. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006; 49: 534-3.
[50]
Sokkar P, Sathis V, Ramachandran M. Computational modeling on the recognition of the HRE motif by HIF-1: Molecular docking and molecular dynamics studies. J Mol Model 2012; 18: 1691-700.
[51]
Schaffer L, Verkhivker GM. Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization. Proteins 1998; 33: 295-310.
[52]
Luty BA, Wasserman ZR, Stouten PF, et al. A molecular mechanics / grid method for evaluation of ligand-receptor interactions. J Comput Chem 1995; 16: 454-64.
[53]
Mangoni M, Roccatano D, Di Nola A. Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Proteins 1999; 35: 153-62.
[54]
Nowosielski M, Hoffmann M, Kuron A, et al. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics. J Comput Chem 2013; 34: 750-6.
[55]
Huang Z, Wong CF, Wheeler RA. Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Proteins 2008; 71: 440-54.
[56]
Antes I. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 2010; 78: 1084-04.
[57]
Whalen KL, Chang KM, Spies MA. Hybrid steered molecular dynamics-docking: An efficient solution to the problem of ranking inhibitor affinities against a flexible drug target. Mol Inform 2011; 30: 459-71.
[58]
Armen RS, Chen J, Brooks III CL. An evaluation of explicit receptor flexibility in molecular docking using molecular dynamics and torsion angle molecular dynamics. J Chem Theory Comput 2009; 5: 2909-23.
[59]
Teodoro ML, Kavraki LE. Conformational flexibility models for the receptor in structure based drug design. Curr Pharm Des 2003; 9: 1635-48.
[60]
Borrelli KW, Cossins B, Guallar V. Exploring hierarchical refinement techniques for induced fit docking with protein and ligand flexibility. J Comput Chem 2010; 31: 1224-35.
[61]
Leis S, Zacharias M. Efficient inclusion of receptor flexibility in grid based protein-ligand docking. J Comput Chem 2011; 32: 3433-9.
[62]
Teodoro ML, Phillips Jr GN, Kavraki LE. Understanding protein flexibility through dimensionality reduction. J Comput Biol 2003; 10: 617-34.
[63]
Zacharias M. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: Binding of FK506 to FKBP. Proteins 2004; 54: 759-67.
[64]
Bottegoni G, Kufareva I, Totrov M, Abagyan R. Four-dimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 2009; 52: 397-406.
[65]
Nabuurs SB, Wagener M, de Vlieg J. A flexible approach to induced fit docking. J Med Chem 2007; 50: 6507-18.
[66]
Yan Y, Wen Z, Wang X, Huang S-Y. Addressing recent docking challenges: A hybrid strategy to integrate template‐based and free protein‐protein docking. Proteins 2017; 85(3): 497-512.
[67]
Corbeil CR, Englebienne P, Moitessier N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J Chem Inf Model 2007; 47: 435-49.
[68]
Huang SY, Zou X. Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking. Proteins 2007; 66: 399-421.
[69]
Knegtel RM, Kuntz ID, Oshiro CM. Molecular docking to ensembles of protein structures. J Mol Biol 1997; 266: 424-40.
[70]
Xu M, Lill MA. Significant enhancement of docking sensitivity using implicit ligand sampling. J Chem Inf Model 2011; 51: 693-706.
[71]
Xu M, Lill MA. Utilizing experimental data for reducing ensemble size in flexible-protein docking. J Chem Inf Model 2012; 52: 187-98.
[72]
Barril X, Fradera X. Incorporating protein flexibility into docking and structure-based drug design. Expert Opin Drug Discov 2006; 1: 335-49.
[73]
Corbeil CR, Therrien E, Moitessier N. Modeling reality for optimal docking of small molecules to biological targets. Curr Computeraided Drug Des 2009; 5: 241-63.
[74]
Rueda M, Bottegoni G, Abagyan R. Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 2010; 50: 186-93.
[75]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-61.
[76]
Correa-Basurto J, Ramos-Morales FR, Matus MH, et al. Docking and DFT studies to explore the Topoisomerase II ATP pocket employing 3-substituted 2,6-piperazindiones for drug design. Mol Simul 2012; 38: 1072-84.
[77]
Shoichet BK, Bodian DL, Kuntz ID. Molecular docking using shape descriptors. J Comput Chem 1992; 13: 380-97.
[78]
Janin J, Cherfils J. Protein docking algorithms: simulating molecular recognition. Curr Opin Struct Biol 1993; 3: 265-9.
[79]
Apostolakis J, Plückthun A, Caflisch A. Docking small ligands inflexible binding sites. J Comput Chem 1998; 19: 21-37.
[80]
Schaffer L, Verkhivker GM. Predicting structural effects in HIV-1protease mutant complexes with flexible ligand docking and proteinside-chain optimization. Proteins 1998; 33: 295-310.
[81]
Burnett RM, Taylor JS. DARWIN: A program for docking flexible molecules. Proteins 2000; 41: 173-91.
[82]
Miranker A, Karplus M. Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 1991; 11(1): 29-34.
[83]
Roberts VA, Pique ME. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. J Biol Chem 1999; 274: 38051-60.
[84]
Nichols SE, Baron R, Ivetac A, McCammon JA. Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 2011; 51: 1439-46.
[85]
Wu G, Robertson DH, Brooks CL, Vieth MD. Detailed analysis of grid-based molecular docking: A case study of CDOCKER? A CHARMm-based MD docking algorithm. J Comput Chem 2003; 24: 1549-62.
[86]
Korb O, Olsson TSG, Bowden SJ, et al. Potential and Limitations of Ensemble Docking. J Chem Inf Model 2012; 52(5): 1262-74.
[87]
Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 2001; 15: 411-28.
[88]
Miller MD, Kearsley SK, Underwood DJ, Sheridan RP. FLOG: a system to select “quasi-flexible” ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 1994; 8: 153-74.
[89]
Kuhl FS, Crippen GM, Friesen DK. A combinatorial algorithm for calculating ligand binding. J Comput Chem 1984; 5: 24-34.
[90]
Smellie AS, Crippen GM, Richards WG. Fast drug-receptor mapping by site-directed distances: a novel method of predicting new pharmacological leads. J Chem Inf Model 1991; 31: 386-92.
[91]
Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996; 261: 470-89.
[92]
Welch W, Ruppert J, Jain AN. Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 1996; 3: 449-62.
[93]
Rarey M, Kramer B, Lengauer T. Time-efficient docking of flexible ligands into active sites of proteins. Proc Int Conf Intell Syst Mol Biol 1995; 3: 300-8.
[94]
Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996; 261: 470-89.
[95]
Rarey M, Kramer B, Lengauer T. Multiple automatic base selection: protein-ligand docking based on incremental construction without manual intervention. J Comput Aided Mol Des 1997; 11: 369-84.
[96]
Schlosser J, Rarey M. Beyond the virtual screening paradigm: structure-based searching for new lead compounds. J Chem Inf Model 2009; 49: 800-9.
[97]
Huang N, Shoichet BK, Irwin JJ. Benchmarking Sets for Molecular Docking. J Med Chem 2006; 49: 6789-801.
[98]
Mark McGann. FRED pose prediction and virtual screening accuracy. J Chem Inf Model 2011; 51: 578-96.
[99]
Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 2004; 47: 1739-49.
[100]
Zsoldos Z, Reid D, Simon A, et al. eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 2007; 26: 198-212.
[101]
Gorelik B, Goldblum A. High quality binding modes in docking ligands to proteins. Proteins Struct Funct Bioinform 2008; 71: 1373-86.
[102]
Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micromachine and human science. Nagoya, Japan. 1995; pp. 39-43.
[103]
Bai Q. Analysis of particle swarm optimization algorithm, computer and information science, vol. volume 3 No 1, Pebruari In: 2010.
[104]
Rini DP, Shamsuddin SM, Yuhaniz SS. Particle swarm optimization: technique, system and challenges. Int J Comput Appl 2011; 14(1): 19-27.
[105]
Ng MCK, Fong S, Siu SWI. PSOVina: The hybrid particle swarm optimization algorithm for protein–ligand docking. J Bioinform Comput Biol 2015; 13(3)
[http://dx.doi.org/10.1142/S0219720015410073]
[106]
Dorigo M, Caro GD. The ant colony optimization meta-heuristic.In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, London, UK, 1999.
[107]
Dorigo M, Caro GD, Gambardella LM. Ant algorithms for discrete optimization. Artif Life 1999; 5(2): 137-72.
[108]
Dorigo M, St¨utzle T. The ant colony optimization metaheuristic: algorithms, applications, and Advances.2003.In F. Glover and GA. Kochenberger, editors, Handbook of Metaheuristics, Vol.57, pp 250-285, Springer, US, doi10.1007/0-306-48056-5_9.
[109]
Goodsell DS, Lauble H, Stout CD, Olson AJ. Automated docking in crystallography: analysis of the substrates of aconitase. Proteins 1993; 17(1): 1-10.
[110]
Hart TN, Read RJ. A multiple-start monte carlo docking method. Proteins 1992; 13(3): 206-.
[111]
Michel J, Tirado-Rives J, Jorgensen WL. Energetics of displacing water molecules from protein binding sites: Consequences for ligand optimization. J Am Chem Soc 2009; 131: 15403-11.
[112]
Abagyan R, Totrov M, Kuznetsov D. ICM-A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994; 15: 488-06.
[113]
McMartin C, Bohacek RS. QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 1997; 11(4): 333-44.
[114]
Molegro Virtual Docker – User manual and references cited therein.
[115]
Schneider G. Automating drug discovery. Nat Rev Drug Discov 2018; 17(2): 97-113.
[116]
Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 2002; 47: 409-43.
[117]
Cheng T, Li X, Li Y, Liu ZC, Wang R. Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 2009; 49: 1079-93.
[118]
Jain AN. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 2003; 46: 499-511.
[119]
Korb O, Stützle T, Exner TE. empirical scoring functions for advanced protein−ligand docking with PLANTS. J Chem Inf Model 2009; 49: 84-96.
[120]
Englebienne P, Moitessier N. Docking ligands into flexible and solvated macromolecules. Force-field-based prediction of binding affinities of ligands to proteins. J Chem Inf Model 2009; 49: 2564-71.
[121]
De Azevedo WF Jr, Dias R. Computational methods for calculation of ligand binding affinity. Curr Drug Targets 2008; 9: 1031-9.
[122]
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins 2003; 52(4): 609-23.
[123]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19(14): 1639-62.
[124]
Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 2000; 295: 337-56.
[125]
Meng XY, Zhang HX, Mezei M, Cui M. Molecular Docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7(2): 146-57.
[126]
DeWitte RS, Shakhnovich EI. SMoG: De novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc 1996; 118: 11733-44.
[127]
Fan H, Schneidman-Duhovny D, Irwin JJ, et al. Statistical potential for modeling and ranking of protein-ligand interactions. J Chem Inf Model 2011; 51: 3078-92.
[128]
Kolb P, Irwin JJ. Docking screens: right for the right reasons? Curr Top Med Chem 2009; 9: 755-70.
[129]
Davis IW, Raha K, Head MS, Baker D. Blind docking of pharmaceutically relevant compounds using Rosetta Ligand. Protein Sci 2009; 18: 1998-2002.
[130]
Cheng T, Li X, Li Y, Liu ZC, Wang R. Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 2009; 49: 1079-93.
[131]
Corbeil CR, Therrien E, Moitessier N. Modeling reality for optimal docking of small molecules to biological targets. Curr Comp Aided Drug Des 2009; 5: 241-63.
[132]
Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A. E-novo: an automated workflow for efficient structure-based lead optimization. J Chem Inf Model 2009; 49: 1797-809.
[133]
Shin W-H, Seok C. Galaxy Dock: Protein-ligand docking with flexible protein side chains. J Chem Inf Model 2012; 52: 3225-32.
[134]
Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy approach to macromolecule-ligand interactions. J Comput Chem 1992; 13: 505-24.
[135]
Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 2001; 30: 211-43.
[136]
Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. J Comput Chem 2002; 23: 128-37.
[137]
Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semi analytical treatment of salvation for molecular mechanics and dynamics. J Am Chem Soc 1990; 112: 6127-9.
[138]
Zou X, Sun Y, Kuntz ID. Inclusion of solvation in ligand binding free energy calculations using the generalized-Born model. J Am Chem Soc 1999; 121: 8033-43.
[139]
Liu H-Y, Kuntz ID, Zou X. Pairwise GB/SA scoring function for structure-based drug design. J Phys Chem B 2004; 108: 5453-62.
[140]
Liu H-Y, Zou X. Electrostatics of ligand binding: Parametrization of the generalized born model and comparison with the Poisson-Boltzmann approach. J Phys Chem B 2006; 110: 9304-13.
[141]
Liu H-Y, Grinter SZ, Zou X. Multiscale generalized born modeling of ligand binding energies for virtual database screening. J Phys Chem B 2009; 113: 11793-9.
[142]
Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch A. Exhaustive docking of molecular fragments with electrostatic solvation. Proteins 1999; 37: 88-105.
[143]
Cecchini M, Kolb P, Majeux N, Caflisch A. Automated docking of highly flexible ligands by genetic algorithms: A critical assessment. J Comput Chem 2004; 25: 412-22.
[144]
Huang D, Luthi U, Kolb P, et al. Discovery of cell-permeable non-peptide inhibitors of beta-secretase by high-throughput docking and continuum electrostatics calculations. J Med Chem 2005; 48: 5108-11.
[145]
Cho AE, Wendel JA, Vaidehi N, et al. The MPSim-Dock hierarchical docking algorithm: Application to the eight trypsin inhibitor cocrystals. J Comput Chem 2005; 26: 48-71.
[146]
Ghosh A, Rapp CS, Friesner RA. Generalized Born model based on a surface integral formulation. J Phys Chem B 1998; 102: 10983-90.
[147]
Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 2006; 49: 4805-8.
[148]
Guimaraes CRW, Cardozo M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 2008; 48: 958-70.
[149]
Tang YT, Marshall GR. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and measurements. J Chem Inf Model 2011; 51: 214-28.
[150]
Thomas PD, Dill KA. An iterative method for extracting energy-like quantities from protein structures. Proc Natl Acad Sci USA 1996; 93: 11628-33.
[151]
Koppensteiner WA, Sippl MJ. Knowledge-based potentials–Back to the roots. Biochemistry (Mosc) 1998; 63: 247-52.
[152]
Thomas PD, Dill KA. Statistical potentials extracted from protein structures: How accurate are they? J Mol Biol 1996; 257: 457-69.
[153]
McQuarrie DA. Statistical Mechanics. Harper Collins Publishers New York, NY, USA 1976.
[154]
Zhang C, Liu S, Zhu Q, Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48: 2325-35.
[155]
Zhao X, Liu X, Wang Y, et al. An improved PMF scoring function for universally predicting the interactions of a ligand with protein, DNA, and RNA. J Chem Inf Model 2008; 48: 1438-47.
[156]
Huang S-Y, Zou X. An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function. J Comput Chem 2006; 27: 1876-82.
[157]
Sousa SF, Ribeiro AJ, Coimbra J, et al. Protein-ligand docking in the new millennium—A retrospective of 10 years in the field. Curr Med Chem 2013; 20: 2296-314.
[158]
Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem 2010; 53: 5061-84.
[159]
Michel J, Verdonk ML, Essex JW. Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization? J Med Chem 2006; 49(25): 7427-39.
[160]
Amadasi A, Spyrakis F, Cozzini P, et al. Mapping the energetics of water-protein and water-ligand interactions with the “natural” HINT forcefield: Predictive tools for characterizing the roles of water in biomolecules. J Mol Biol 2006; 358: 289-309.
[161]
Kellogg GE, Chen DL. The importance of being exhaustive. Optimization of bridging structural water molecules and water networks in models of biological systems. Chem Biodivers 2004; 1: 98-105.
[162]
Fuller JC, Burgoyne NJ, Jackson RM. Predicting druggable binding sites at the protein-protein interface. Drug Discov Today 2009; 14: 155-61.
[163]
Meireles LM, Dömling AS, Camacho CJ. ANCHOR: A web server and database for analysis of protein-protein interaction binding pockets for drug discovery. Nucleic Acids Res 2010; 38: W407-11.
[164]
Laurie AT, Jackson RM. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005; 21: 1908-16.
[165]
Dominguez C, Boelens R, Bonvin AM. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003; 125: 1731-7.
[166]
O’Boyle NM, Liebeschuetz JW, Cole JC. Testing assumptions and hypotheses for rescoring success in protein-ligand docking. J Chem Inf Model 2009; 49: 1871-8.
[167]
Kukol A. Consensus virtual screening approaches to predict protein ligands. Eur J Med Chem 2011; 46: 4661-4.
[168]
Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem 2006; 49: 6789-801.
[169]
Chang MW, Ayeni C, Breuer S, Torbett BE. Virtual screening for HIV protease inhibitors: A comparison of AutoDock 4 and Vina. PLoS One 2010; 5: e11955.
[170]
Houston DR, Walkinshaw MD. Consensus Docking: Improving the Reliability of Docking in a Virtual Screening Context. J Chem Inf Model 2013; 53: 384-90.
[171]
Wandzik I. Current Molecular docking tools and comparisons thereof. MATCH Commun Math Comput Chem 2006; 55: 271-8.
[172]
Murray CW, Baxter CA, David Frenkel AD. The sensitivity of the results of molecular docking to induced fit effects: Application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 1999; 13: 547-62.
[173]
Saikia S, Kolita B, Dutta PP, et al. Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1. Steroid 2015; 102: 7-16.
[174]
Bordoloi MJ, Saikia S, Kolita B, et al. Volatile Inhibitors of Phosphatidylinositol-3-Kinase (PI3K) Pathway: Anti-Cancer Potential of Aroma Compounds of Plant Essential Oils. Anticancer Agents Med Chem 2018; 18(1): 87-109.
[175]
Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A. Molecular docking screens using comparative models of proteins. J Chem Inf Model 2009; 49: 2512-27.
[176]
Talukdar M, Bordoloi M, Dutta PP, et al. Structure elucidation and biological activity of antibacterial compound from Micromonospora auratinigra, a soil Actinomycetes. J Appl Microbiol 2016; 121(4): 973-87.
[177]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDock Tools4: automated docking with selective receptor flexibility. J Comput Chem 2009; 30: 2785-91.
[178]
Davis IW, Baker D. RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 2009; 385: 381-92.
[179]
Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 2006; 67: 83-4.
[180]
Lauria A, Ippolito M, Almerico AM. Inside the Hsp90 inhibitors binding mode through induced fit docking. J Mol Graph Model 2009; 27: 712-22.
[181]
Barreca ML, Iraci N, De Luca L, Chimirri A. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. ChemMedChem 2009; 4: 1446-56.
[182]
King AR, Dotsey EY, Lodola A, et al. Discovery of potent and reversible monoacylglycerol lipase inhibitors. Chem Biol 2009; 16: 1045-52.
[183]
Onodera K, Satou K, Hirota H. Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 2007; 47(4): 1609-18.
[184]
Cole JC, Murray CW, Nissink JW, Taylor RD, Taylor R. Comparing protein-ligand docking programs is difficult. Proteins 2005; 60(3): 325-32.
[185]
Warren GL, Andrews CW, Capelli AM, et al. A critical assessment of docking programs and scoring functions. J Med Chem 2006; 49(20): 5912-31.
[186]
Oda A, Yamaostu N, Hirono S, et al. Effects of initial settings on computational protein–ligand docking accuracies for several docking programs. Mol Simul 2015; 41: 10-2.
[187]
Huang S-Y. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges. Brief Bioinform 2017; 1-13.
[188]
Ban T, Ohue M, Akiyama Y. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem. Comput Biol Chem 2018; 73: 139-46.
[189]
Ashtawy HM, Mahapatra NR. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment. J Chem Inf Model 2018; 58(1): 119-33.
[190]
Huang S, Song C, Wang X, et al. Discovery of new sirt2 inhibitors by utilizing a consensus docking/scoring strategy and structure-activity relationship analysis. J Chem Inf Model 2017; 57(4): 669-79.
[191]
Ren X, Shi YS, Zhang Y, et al. A novel consensus docking strategy to improve the ligand pose prediction. J Chem Inf Model 2018; 58(8): 1662-8.
[192]
Scarpino A, Ferenczy GG, Keserű GM. Comparative Evaluation of Covalent Docking Tools. J Chem Inf Model 2018; 58(7): 1441-58.
[193]
Agnihotri P, Mishra AK, Mishra S, et al. Identification of novel inhibitors of leishmania donovani γ-glutamylcysteine synthetase using structure-based virtual screening, docking, molecular dynamics simulation, and in vitro studies. J Chem Inf Model 2017; 57(4): 815-25.
[194]
Frączek T, Siwek A, Paneth P. Assessing molecular docking tools for relative biological activity prediction: a case study of triazole HIV-1 NNRTIs. J Chem Inf Model 2013; 53(12): 3326-42.
[195]
Nurisso A, Bravo J, Carrupt PA, Daina A. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: impact on GOLD docking performance. J Chem Inf Model 2012; 52(5): 1319-27.
[196]
Ericksen SS, Wu H, Zhang H, et al. Machine learning consensus scoring improves performance across targets in structure-based virtual screening. J Chem Inf Model 2017; 57(7): 1579-90.
[197]
Sønderby P, Rinnan Å, Madsen JJ, et al. Small-angle x-ray scattering data in combination with rosettadock improves the docking energy landscape. J Chem Inf Model 2017; 57(10): 2463-75.
[198]
Chaskar P, Zoete V, Röhrig UF. On-the-fly qm/mm docking with attracting cavities. J Chem Inf Model 2017; 57(1): 73-84.
[199]
Zhou P, Li B, Yan Y, et al. Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides. J Chem Inf Model 2018; 58(6): 1292-302.
[200]
Vistoli G, Mazzolari A, Testa B, Pedretti A. Binding space concept: a new approach to enhance the reliability of docking scores and its application to predicting butyrylcholinesterase hydrolytic activity. J Chem Inf Model 2017; 57(7): 1691-702.
[201]
Takemura K, Sato C, Kitao A. ColDock: concentrated ligand docking with all-atom molecular dynamics simulation. J Phys Chem B 2018; 122(29): 7191-200.
[202]
Alogheli H, Olanders G, Schaal W, Brandt P, Karlén A. Docking of macrocycles: comparing rigid and flexible docking in glide. J Chem Inf Model 2017; 57(2): 190-202.
[203]
Timofeeva OA, Tarasova NI, Zhang X, et al. STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci USA 2013; 110: 1267-72.
[204]
Matsuno K, Masuda Y, Uehara Y, et al. Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med Chem Lett 2010; 1: 371-5.
[205]
Marrakchi H, Lanéelle G, Quémard A. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 2000; 146: 289-96.
[206]
Pauli I, dos Santos RN, Rostirolla DC, et al. Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J Chem Inf Model 2013; 53: 2390-401.
[207]
Dadashpour S. TuyluKucukkilinc T, Unsal Tan O, et al Design, synthesis and in vitro study of 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives as COX-2 and β-amyloid aggregation inhibitors. Arch Pharm 2015; 348: 179-87.
[208]
Ren JX, Li LL, Zheng RL, et al. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J Chem Inf Model 2011; 51: 1364-75.
[209]
Wang L, Gu Q, Zheng X, et al. Discovery of new selective human aldose reductase inhibitors through virtual screening multiple binding pocket conformations. J Chem Inf Model 2013; 53: 2409-22.
[210]
Efferth T, Koch E. complex interactions between phytochemicals. the multi-target therapeutic concept of phytotherapy. Curr Drug Targets 2011; 12: 122-32.
[211]
Jorgensen WL. The many roles of computation in drug. Science (New York, NY) 2004; 303: 1813-8.
[212]
Hardy LW, Malikayil A. The impact of structure-guided drug design on clinical agents www.currentdrugdiscovery.com 2003; 15- 9.
[213]
Maryanoff BE. Inhibitors of serine proteases as potential therapeutic agents: The road from thrombin to tryptase to cathepsin g. J Med Chem 2004; 7(4): 770-87.
[214]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[215]
Wang L, Wu Y, Deng Y, et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 2015; 137(7): 2695-703.
[216]
Vilar S, Karpiak J, Costanzi S. Ligand and structure-based models for the prediction of ligandreceptor affinities and virtual screenings: Development and application to the β2-adrenergic receptor. J Comput Chem 2010; 31: 707-20.
[217]
Costanzi S, Tikhonova IG, Ohno M, et al. P2Y1 antagonists: Combining receptor-based modeling and QSAR for a quantitative prediction of the biological activity based on consensus scoring. J Med Chem 2007; 50: 3229-41.
[218]
Robertson JG. Enzymes as a special class of therapeutic target: Clinical drugs and modes of action. Curr Opin Struct Biol 2007; 17: 674-9.
[219]
Ouyang X, Zhou S, Su CTT, et al. Covalent Dock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem 2013; 34: 326-36.
[220]
Zhu K, Bonelli KW, Greenwood JR, et al. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J Chem Inf Model 2014; 54: 1932-40.
[221]
Wallach I, Dzamba M, Heifets A. Atomnet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855, 2015
[222]
Kashima H, Hisashi, and Akihiro Inokuchi A. Kernels for graph classification. ICDM Workshop on Active Mining 2002: 2002.
[223]
von Behren MM, Bietz S, Nittinger E, Rarey M. mRAISE: an alternative algorithmic approach to ligand-based virtual screening. J Comput Aided Mol Des 2016; 30(8): 583-94.
[224]
Okuno T, Kato K, Terada TP, Sasai M, Chikenji G. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein−Ligand Complexes. J Chem Inf Model 2015; 55: 1108-19.
[225]
Wang N, Wang L, Xie XQ. ProSelection: A novel algorithm to select proper protein structure subsets for in silico target identification and drug discovery research. J Chem Inf Model 2017; 57(11): 2686-98.
[226]
Krull F, Korff G, Elghobashi-Meinhardt N, Knapp EW. ProPairs: a data set for protein-protein docking. J Chem Inf Model 2015; 55(7): 1495-507.
[227]
Iakovou G, Hayward S, Laycock SD. Virtual environment for studying the docking interactions of rigid biomolecules with haptics. J Chem Inf Model 2017; 57(5): 1142-52.
[228]
Szalay A, Gray J. 2020 computing: Science in an exponential world. Nature 2006; 440(7083): 413-4.
[229]
Zou J, Han Y, So SS. Overview of artificial neural networks. inArtificial Neural Networks (Methods in Molecular Biology) D J Livingstone, Ed. Totowa, NJ, USA: Humana Press 2009; Vol. 458: pp. 14-22.
[230]
Wei Wang FP, Tung AKH, Yang J. Finding representative set from massive data in Proc 5th IEEE Int Conf Data Mining (ICDM) Sep 2005, pp. s8-15.
[231]
Ballester PJ. Ultrafast shape recognition: Method and applications. Future Med Chem 2011; 3(1): 65-78.
[232]
Schneider G. Virtual screening: An endless staircase? Nat Rev Drug Discov 2010; 9(4): 273-6.
[233]
Ruddigkeit L, van Deursen R, Blum LC, Reymond JL. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 2012; 52(11): 2864-75.
[234]
Ghosh-Dastidar S, Adeli H. Spiking neural networks. Int J Neural Syst 2009; 19(4): 295-308.
[235]
Rossello JL, Canals V, Morro A, Oliver A. Hardware implementation of stochastic spiking neural networks. Int J Neural Syst 2012; 22(4): 1250014.
[236]
Ballester PJ, Westwood I, Laurieri N, Sim E, Richards WG. Prospective virtual screening with ultrafast shape recognition: The identification of novel inhibitors of arylamine N-acetyltransferases. J R Soc Interface 2009; 7(43): 335-42.
[237]
Morro A, Canals V, Oliver A, et al. A stochastic spiking neural network for virtual screening. IEEE Trans Neural Netw Learn Syst 2017 Feb 7
[http://dx.doi.org/10.1109/TNNLS.2017.2657601]
[238]
Hongjian Li, Leung K-S, Wong M-H, Ballester PJ. Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinfo 2016; 17(Suppl. 11): 308. https://doi.org/10.1186/s12859-016-1169-4
[239]
Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010; 26(9): 1169-75.
[240]
Ballester PJ, Schreyer A, Blundell TL. Does a more precise chemical description of protein–ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 2014; 54(3): 944-55.
[241]
Li H, Leung KS, Wong MH, Ballester PJ. Improving autodock vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform 2015; 34(2-3): 115-26.
[242]
Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model 2011; 51: 2897-903.
[243]
Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screeningWIREs Comput Mol Sci 2015.
[244]
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 2012; 14: 133-41.
[245]
Huang S-Y, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions. Phys Chem Chem Phys 2010; 12: 12899-908.
[246]
Ma D-L, Chan DS-H, Leung C-H. Drug repositioning by structure-based virtual screening. Chem Soc Rev 2013; 42: 2130-41.
[247]
Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep2017, Apr 25 7: 46710.
[http://dx.doi.org/10.1038/srep46710]
[248]
Lin C, Chen W, Qiu C, et al. LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 2014; 123: 424-35.
[249]
Pan AC, Borhani DW, Dror RO, Shaw DE. Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 2013; 18: 667-73.
[250]
Copeland RA, Pompliano DL, Meek TD. Opinion–drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 2006; 5: 730-9.
[251]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162: 1239-49.
[252]
Bains W. Failure rates in drug discovery and development: will we ever get any better? Drug Discov World 2004; 5: 9-18.
[253]
Mullard A. New drug costs US $2.6 billion to develop. Nat Rev Drug Discov 2014; 13: 877.
[254]
Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0 - the Human Metabolome Database in 2013. Nucleic Acids Res 2013; 41: D801-7.
[255]
Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66: 8927-30.
[256]
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15(7): 473-84.
[257]
Thomas DW, Burn J, Audette J, et al. Clinical development duccess Rates 2006 2015.
[258]
Smietana K, Siatkowski M, Møller M. Trends in clinical success rates. Nat Rev Drug Discov 2016; 15(6): 379-80.
[259]
Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 2017; 16(8): 531-43.
[260]
Nature Reviews Drug Discovery, Published online 28 Apr 2017;
[http://dx.doi.org/10.1038/nrd.2017.69]
[261]
Nature Reviews Drug Discovery, Published online 28 Dec 2017;
[http://dx.doi.org/10.1038/nrd.2017.262]
[262]
Bollag G, Tsai J, Zhang J, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012; 11(11): 873-86.
[263]
Szőllősi E, Bobok A, Kiss L, et al. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg Med Chem 2015; 1523(14): 3991-9.
[264]
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 2016; 15(8): 533-50.
[266]
Harrison RK. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov 2016; 15(12): 817-8.
[267]
Blaschke TF, Osterberg L, Vrijens B, Urquhart J. Adherence to medications: insights arising from studies on the unreliable link between prescribed and actual drug dosing histories. Annu Rev Pharmacol Toxicol 2012; 52: 275-301.
[268]
Mullard A. 2016 FDA drug approvals. Nat Rev Drug Discov 2017
[http://dx.doi.org/10.1038/nrd.2017.14]
[269]
Mullard A. FDA drug approvals. Nat Rev Drug Discov 2017; 2018
[http://dx.doi.org/10.1038/nrd.2018.4]
[270]
Vlahović-Palčevski V, Mentzer D. Postmarketing surveillance. Handb Exp Pharmacol 2011; 205: 339-51.
[271]
Suvarna V. Phase IV of Drug Development. Perspect Clin Res 2010; 1(2): 57-60.
[272]
Pitts PJ, Louet HL, Moride Y, Conti RM. 21st century pharmacovigilance: efforts, roles, and responsibilities. Lancet Oncol 2016; 17: e486-92.
[273]
Mullard A. FDA unveils searchable adverse events system. Nat Rev Drug Discov 2017; 16(11): 743.
[274]
Zeitoun JD, Ross JS, Atal I, et al. Factors associated with post-marketing research for approved indications for novel medicines approved by both the FDA and EMA between 2005 and 2010: A multivariable analysis. Clin Pharmacol Ther 2018; 104(5): 1000-7.
[275]
Maeda K, Katashima R, Ishizawa K, Yanagawa H. Japanese Physicians’ Views on Drug Post-Marketing Surveillance. J Clin Med Res 2015; 7(12): 956-60.
[276]
Xiao C, Li Y, Baytas IM, Zhou J, Wang F. An MCEM Framework for drug safety signal detection and combination from heterogeneous real world evidence. Sci Rep 2018; 8
[http://dx.doi.org/10.1038/s41598-018-199797]
[277]
Butler SF, McNaughton EC, Black RA, Cassidy TA. Evaluation of the relative abuse of an oros® extended-release hydromorphone hci product: Results from three Post-market Surveillance Studies. Clin J Pain 2018; 34(7): 618-28.
[278]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[279]
Dixit R, David FS. Market watch: Trends in pharmaceutical company R&D spending: 2005-2015. Nat Rev Drug Discov 2017; 16(6): 376.
[280]
Gilliland CT, Zuk D, Kocis P, et al. Putting translational science on to a global stage. Nat Rev Drug Discov 2016; 15(4): 217-8.
[281]
Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 2013; 14: 681-91.
[282]
Mullard A. FDA approves first digital pill. Nat Rev Drug Discov 2017; 16: 818.
[283]
Hunter NL, Rao GR, Sherman RE. Flexibility in the FDA approach to orphan drug development. Nat Rev Drug Discov 2017; 16(11): 737-8.
[284]
Kodamullil AT, Zekri F, Sood M, et al. Tracing investment in drug development for Alzheimer disease. Nat Rev Drug Discov 2017; 16(12): 819.
[285]
King RD, Rowland J, Oliver SG, et al. The automation of science. Science 2009; 324: 85-9.
[286]
Sanderson K. March of the synthesis machines. Nat Rev Drug Discov 2015; 14: 299-300.
[287]
Harrison S, Lahue B, Peng Z, et al. Extending ‘predict first’ to the design-make-test cycle in small-molecule drug discovery. Future Med Chem 2017; 9(6): 533-6.
[288]
Reutlinger M, Rodrigues T, Schneider P, Schneider G. Combining On-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands. Angew Chem Int Ed 2014; 53: 582-5.
[289]
Schneider P, Röthlisberger M, Reker D, Schneider G. Spotting and designing promiscuous ligands for drug discovery. Chem Commun (Camb) 2016; 52: 1135-8.
[290]
Rodrigues T, Reker D, Welin M. De novo fragment design for drug discovery and chemical biology. Angew Chem Int Ed 2015; 54: 15079-83.
[291]
Friedrich L, Rodrigues T, Neuhaus CS, Schneider P, Schneider G. From complex natural products to simple synthetic mimetics by computational de novo design. Angew Chem Int Ed 2016; 55: 6789-92.
[292]
Schneider G. Automating drug discovery. Nat Rev Drug Discov 2018; 17(2): 97-113.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy