[1]
Ostrom, Q.T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro-oncol., 2016, 18(2016), v1-v75.
[2]
Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; Ellison, D.W. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol., 2012, 123, 465-472.
[3]
Cavalli, F.M.G.; Remke, M.; Rampasek, L.; Peacock, J.; Shih, D.J.H.; Luu, B.; Garzia, L.; Torchia, J.; Nor, C.; Morrissy, A.S.; Agnihotri, S.; Thompson, Y.Y.; Kuzan-Fischer, C.M.; Farooq, H.; Isaev, K.; Daniels, C.; Cho, B.K.; Kim, S.K.; Wang, K.C.; Lee, J.Y.; Grajkowska, W.A.; Perek-Polnik, M.; Vasiljevic, A.; Faure-Conter, C.; Jouvet, A.; Giannini, C.; Nageswara Rao, A.A.; Li, K.K.W.; Ng, H.K.; Eberhart, C.G.; Pollack, I.F.; Hamilton, R.L.; Gillespie, G.Y.; Olson, J.M.; Leary, S.; Weiss, W.A.; Lach, B.; Chambless, L.B.; Thompson, R.C.; Cooper, M.K.; Vibhakar, R.; Hauser, P.; van Veelen, M.C.; Kros, J.M.; French, P.J.; Ra, Y.S.; Kumabe, T.; Lopez-Aguilar, E.; Zitterbart, K.; Sterba, J.; Finocchiaro, G.; Massimino, M.; Van Meir, E.G.; Osuka, S.; Shofuda, T.; Klekner, A.; Zollo, M.; Leonard, J.R.; Rubin, J.B.; Jabado, N.; Albrecht, S.; Mora, J.; Van Meter, T.E.; Jung, S.; Moore, A.S.; Hallahan, A.R.; Chan, J.A.; Tirapelli, D.P.C.; Carlotti, C.G.; Fouladi, M.; Pimentel, J.; Faria, C.C.; Saad, A.G.; Massimi, L.; Liau, L.M.; Wheeler, H.; Nakamura, H.; Elbabaa, S.K.; Perezpena-Diazconti, M.; Chico Ponce de Leon, F.; Robinson, S.; Zapotocky, M.; Lassaletta, A.; Huang, A.; Hawkins, C.E.; Tabori, U.; Bouffet, E.; Bartels, U.; Dirks, P.B.; Rutka, J.T.; Bader, G.D.; Reimand, J.; Goldenberg, A.; Ramaswamy, V. Taylor; M.D. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.
[4]
Ramaswamy, V.; Taylor, M.D. Medulloblastoma: From myth to molecular. J. Clin. Oncol., 2017, 35, 2355-2363.
[5]
Zollo, M. Genetics of recurrent medulloblastoma. Lancet Oncol., 2013, 14, 1147-1148.
[6]
Beier, D.; Proescholdt, M.; Reinert, C.; Pietsch, T.; Jones, D.T.; Pfister, S.M.; Hattingen, E.; Seidel, C.; Dirven, L.; Luerding, R.; Reijneveld, J. Multicenter pilot study of radio-chemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro-oncol., 2017, 20(3), 400-410.
[7]
Packer, R.J.; Sutton, L.N.; Elterman, R.; Lange, B.; Goldwein, J.; Nicholson, H.S.; Mulne, L.; Boyett, J.; D’Angio, G.; Wechsler-Jentzsch, K.; Reaman, G. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg., 1994, 81(5), 690-698.
[8]
De, B.; Beal, K.; De Braganca, K.C.; Souweidane, M.M.; Dunkel, I.J.; Khakoo, Y.; Gilheeney, S.W.; DeAngelis, L.M.; Menzel, P.; Patel, S.H.; Wolden, S.L. Long-term outcomes of adult medulloblastoma patients treated with radiotherapy. J. Neurooncol., 2017, 136(1), 95-104.
[9]
Ris, M.D.; Walsh, K.; Wallace, D.; Armstrong, F.D.; Holmes, E.; Gajjar, A.; Zhou, T.; Packer, R.J. Intellectual and academic outcome following two chemotherapy regimens and radiotherapy for average-risk medulloblastoma: COG A9961. Pediatr. Blood Cancer, 2013, 60(8), 1350-1357.
[10]
von Hoff, K.; Rutkowski, S. Medulloblastoma. Curr. Treat. Options Neurol., 2012, 14(4), 416-426.
[11]
Yang, M.Y.; Lee, H.T.; Chen, C.M.; Shen, C.C.; Ma, H.I. Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. Int. J. Mol. Sci., 2014, 15(6), 11013-11029.
[12]
Kao, C.L.; Huang, P.I.; Tsai, P.H.; Tsai, M.L.; Lo, J.F.; Lee, Y.Y.; Chen, Y.J.; Chen, Y.W.; Chiou, S.H. Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int. J. Radiat. Oncol. Biol. Phys., 2009, 74(1), 219-228.
[13]
Aoki, Y.; Feldman, G.M.; Tosato, G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood, 2003, 101(4), 1535-1542.
[14]
Amin, H.M.; McDonnell, T.J.; Ma, Y.; Lin, Q.; Fujio, Y.; Kunisada, K.; Leventaki, V.; Das, P.; Rassidakis, G.Z.; Cutler, C.; Medeiros, L.J. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene, 2004, 23(32), 5426-5434.
[15]
Q., Xu; J., Briggs; S., Park; G., Niu; M., Kortylewski; S., Zhang; T., Gritsko; J., Turkson; H., Kay; G.L., Semenza; J.Q., Cheng; R., Jove; H., Yu Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 2005, 24, 5552-5560.
[16]
Bollrath, J.; Phesse, T.J.; von Burstin, V.A.; Putoczki, T.; Bennecke, M.; Bateman, T.; Nebelsiek, T.; Lundgren-May, T.; Canli, Ö.; Schwitalla, S.; Matthews, V. Greten, gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 2009, 15(2), 91-102.
[17]
Buchert, M.; Burns, C.J.; Ernst, M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene, 2016, 35(8), 939-951.
[18]
Thomas, S.J.; Snowden, J.A.; Zeidler, M.P.; Danson, S.J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer, 2015, 113(3), 365-371.
[19]
Xiao, H.; Bid, H.K.; Jou, D.; Wu, X.; Yu, W.; Li, C.; Houghton, P.J.; Lin, J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J. Biol. Chem., 2015, 290(6), 3418-3429.
[20]
Chen, X.; Wei, J.; Li, C.; Pierson, C.R.; Finlay, J.L.; Lin, J. Blocking interleukin-6 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity of human medulloblastoma cells. Int. J. Oncol., 2018, 52(2), 571-578.
[21]
Chen, X.; Williams, W.V.; Sandor, V.; Yeleswaram, S. Population pharmacokinetic analysis of orally-administered ruxolitinib (INCB018424 Phosphate) in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (PPV-MF) or post-essential thrombocythemia myelofibrosis (PET MF). J. Clin. Pharmacol., 2013, 53(7), 721-730.
[23]
Helena, A.Y.; Perez, L.; Chang, Q.; Gao, S.P.; Kris, M.G.; Riely, G.J.; Bromberg, J. A phase 1/2 trial of ruxolitinib and erlotinib in patients with EGFR-mutant lung adenocarcinomas with acquired resistance to erlotinib. J. Thorac. Oncol., 2017, 12(1), 102-109.
[24]
Panés, J.; Vermeire, S.; Lindsay, J.O.; Sands, B.E.; Su, C.; Friedman, G.; Zhang, H.; Yarlas, A.; Bayliss, M.; Maher, S.; Cappelleri, J.C. Tofacitinib in patients with ulcerative colitis: Health-related quality of life in phase 3 randomized controlled induction and maintenance studies. J. Crohn’s Colitis, 2017, 12(2), 145-156.
[25]
Fukuyama, T.; Tschernig, T.; Qi, Y.; Volmer, D.A.; Baumer, W. Aggression behaviour induced by oral administration of the Janus-kinase inhibitor tofacitinib, but not oclacitinib, under stressful conditions. Eur. J. Pharmacol., 2015, 764, 278-282.
[26]
Haile, W.B.; Gavegnano, C.; Tao, S.; Jiang, Y.; Schinazi, R.F.; Tyor, W.R. The janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol. Dis., 2016, 92, 137-143.
[27]
Airiau, K.; Turcq, B.; Mahon, F.X.; Belloc, F. A new mechanism of resistance to ABL1 tyrosine kinase inhibitors in a BCR-ABL1-positive cell line. Leuk. Res., 2017, 61, 44-52.
[28]
Egloff, A.M.; Grandis, J.R. Grandis, response to combined molecular targeting: defining the role of P-STAT3. Clin. Cancer Res., 2011, 17(3), 393-395.
[29]
Nagaraj, N.S.; Smith, J.J.; Revetta, F.; Washington, M.K.; Merchant, N.B. Targeted inhibition of SRC kinase signaling attenuates pancreatic tumorigenesis. Mol. Cancer Ther., 2010, 9(8), 2322-2332.
[30]
Sikkema, A.H.; Diks, S.H.; den Dunnen, W.F.; ter Elst, A.; Scherpen, F.J.; Hoving, E.W.; Ruijtenbeek, R.; Boender, P.J.; de Wijn, R.; Kamps, W.A. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res., 2009, 69(14), 5987-5995.
[31]
Antonarakis, E.S.; Heath, E.I.; Posadas, E.M.; Evan, Y.Y.; Harrison, M.R.; Bruce, J.Y.; Cho, S.Y.; Wilding, G.E.; Fetterly, G.J.; Hangauer, D.G.; Kwan, M.F.R. A phase 2 study of KX2-391, an oral inhibitor of Src kinase and tubulin polymerization, in men with bone-metastatic castration-resistant prostate cancer. Cancer Chemother. Pharmacol., 2013, 71(4), 883-892.
[32]
Naing, A.; Cohen, R.; Dy, G.K.; Hong, D.S.; Dyster, L.; Hangauer, D.G.; Kwan, R.; Fetterly, G.; Kurzrock, R.; Adjei, A.A. A phase I trial of KX2-391, a novel non-ATP competitive substrate-pocket- directed SRC inhibitor, in patients with advanced malignancies. Invest. New Drugs, 2013, 31(4), 967-973.
[33]
Frismantas, V.; Dobay, M.P.; Rinaldi, A.; Tchinda, J.; Dunn, S.H.; Kunz, J.; Richter-Pechanska, P.; Marovca, B.; Pail, O.; Jenni, S.; Diaz-Flores, E. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood, 129(11), e26-e37.
[34]
Smolinski, M.P.; Bu, Y.; Clements, J.; Gelman, I.H.; Hegab, T.; Cutler, D.L.; Fang, J.W.; Fetterly, G.; Kwan, R.; Barnett, A.; Lau, J.Y. Discovery of novel dual mechanism of action src signaling and tubulin polymerization inhibitors (KX2-391 and KX2-361). J. Med. Chem., 2018, 61, 4704-4719.
[35]
Smolinski, M.P.; Bu, Y.; Clements, J.; Gelman, I.H.; Hegab, T.; Cutler, D.L.; Fang, J.W.; Fetterly, G.; Kwan, R.; Barnett, A.; Lau, J.Y. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood, 2008, 112, 1005-1012.
[36]
Aplenc, R.; Blaney, S.M.; Strauss, L.C.; Balis, F.M.; Shusterman, S.; Ingle, A.M.; Agrawal, S.; Sun, J.; Wright, J.J.; Adamson, P.C. Pediatric phase I trial and pharmacokinetic study of dasatinib: A report from the children’s oncology group phase I consortium. J. Clin. Oncol., 2011, 29(7), 839-844.
[37]
Cardin, D.B.; Goff, L.W.; Chan, E.; Whisenant, J.G.; Ayers, G.D.; Takebe, N.; Arlinghaus, L.R.; Yankeelov, T.E.; Berlin, J.; Merchant, N. Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results: A phase I clinical trial. Invest. New Drugs, 2017, 36(3), 442-450.
[38]
Evans, T.R.J.; Van Cutsem, E.; Moore, M.J.; Bazin, I.S.; Rosemurgy, A.; Bodoky, G.; Deplanque, G.; Harrison, M.; Melichar, B.; Pezet, D.; Elekes, A. Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Ann. Oncol., 2017, 28, 354-361.
[39]
Kato, S.; Jardim, D.L.; Johnson, F.M.; Subbiah, V.; Piha-Paul, S.; Tsimberidou, A.M.; Falchook, G.S.; Karp, D.; Zinner, R.; Wheler, J.; Janku, F. Phase I study of the combination of crizotinib (as a MET inhibitor) and dasatinib (as a c-SRC inhibitor) in patients with advanced cancer. Invest. New Drugs, 2017, 36(3), 416-423.
[40]
Petersen, W.; Liu, J.; Yuan, L.; Zhang, H.; Schneiderjan, M.; Cho, Y.J.; MacDonald, T.J. Dasatinib suppression of medulloblastoma survival and migration is markedly enhanced by combining treatment with the aurora kinase inhibitor AT9283. Cancer Lett., 2015, 354, 68-76.
[41]
Rossi, A.; Schenone, S.; Angelucci, A.; Cozzi, M.; Caracciolo, V.; Pentimalli, F.; Puca, A.; Pucci, B.; La Montagna, R.; Bologna, M.; Botta, M. New pyrazolo-[3,4-d]-pyrimidine derivative Src kinase inhibitors lead to cell cycle arrest and tumor growth reduction of human medulloblastoma cells. FASEB J., 2010, 24, 2881-2892.
[42]
Robinson, G.W.; Rudneva, V.A.; Buchhalter, I.; Billups, C.A.; Waszak, S.M.; Smith, K.S.; Bowers, D.C.; Bendel, A.; Fisher, P.G.; Partap, S.; Crawford, J.R. Risk-adapted therapy for young children with medulloblastoma (SJYC07): Therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol., 2018, 19, 768-784.
[43]
Rao, A.A.N.; Wallace, D.J.; Billups, C.; Boyett, J.M.; Gajjar, A.; Packer, R.J. Cumulative cisplatin dose is not associated with event-free or overall survival in children with newly diagnosed average-risk medulloblastoma treated with cisplatin based adjuvant chemotherapy: Report from the Children’s Oncology Group. Pediatr. Blood Cancer, 2014, 61(1), 102-106.
[44]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[45]
Nicolaas, A.P.F.; Hans, M.R.; Jan, S.; Jaap, H.; Chris, V.B. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1, 2315-2319.
[46]
Harada, K.; Nishitsuji, H.; Ujino, S.; Shimotohno, K. Identification of KX2-391 as an inhibitor of HBV transcription by a recombinant HBV-based screening assay. Antiviral Res., 2017, 144, 138-146.
[47]
Heine, A.; Held, S.A.E.; Daecke, S.N.; Wallner, S.; Yajnanarayana, S.P.; Kurts, C.; Wolf, D.; Brossart, P. 2013The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood, 2013, 122(7), 1192-1202.
[48]
Lam, C.; Ferguson, I.D.; Mariano, M.C.; Lin, Y.H.T.; Murnane, M.; Liu, H.; Smith, G.A.; Wong, S.W.; Taunton, J.; Liu, J.O.; Mitsiades, C.S. Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment. Haematologica, 2018, 103(7), 1218-1228.
[49]
Gold, K.A.; Lee, J.J.; Harun, N.; Tang, X.; Price, J.; Kawedia, J.D.; Tran, H.T.; Erasmus, J.J.; Blumenschein, G.R.; William, W.N.; Wistuba, I.I. A phase I/II study combining erlotinib and dasatinib for non-small cell lung cancer. Oncologist, 2014, 19, 1040-1041.
[50]
Chee, C.E.; Krishnamurthi, S.; Nock, C.J.; Meropol, N.J.; Gibbons, J.; Fu, P.; Bokar, J.; Teston, L.; O’Brien, T.; Gudena, V.; Reese, A. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist, 2013, 18(10), 1091-1092.
[51]
Ginsberg, S.; Kirshner, J.; Reich, S.; Panasci, L.; Finkelstein, T.; Fandrich, S.; Fitzpatrick, A.; Shechtman, L.; Comis, R. Systemic chemotherapy for a primary germ cell tumor of the brain: A pharmacokinetic study. Cancer Treat. Rep., 1981, 65(5-6), 477-483.
[52]
Kato, K.; Nomoto, M.; Izumi, H.; Ise, T.; Nakano, S.; Niho, Y.; Kohno, K. Structure and functional analysis of the human STAT3 gene promoter: alteration of chromatin structure as a possible mechanism for the upregulation in cisplatin-resistant cells. Biochim. Biophys. Acta, 2000, 1493(1), 91-100.
[53]
Liu, W.H.; Chen, M.T.; Wang, M.L.; Lee, Y.Y.; Chiou, G.Y.; Chien, C.S.; Huang, P.I.; Chen, Y.W.; Huang, M.C.; Chiou, S.H.; Shih, Y.H. Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget, 2015, 6(3), 1750-1768.
[54]
Chen, J.; Lan, T.; Zhang, W.; Dong, L.; Kang, N.; Fu, M.; Liu, B.; Liu, K.; Zhang, C.; Hou, J.; Zhan, Q. Dasatinib enhances cisplatin sensitivity in human esophageal squamous cell carcinoma (ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch. Biochem. Biophys., 2015, 575, 38-45.
[55]
Neumann, J.E.; Swartling, F.J.; Schüller, U. Medulloblastoma: experimental models and reality. Acta Neuropathol., 2017, 134(5), 679-689.
[56]
Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705.
[57]
Sen, M.; Pollock, N.I.; Black, J.; DeGrave, K.A.; Wheeler, S.; Freilino, M.L.; Joyce, S.; Lui, V.W.; Zeng, Y.; Chiosea, S.I.; Grandis, J.R. JAK kinase inhibition abrogates STAT3 activation and head and neck squamous cell carcinoma tumor growth. Neoplasia, 2015, 17(3), 256-264.
[58]
Zapotocky, M.; Mata-Mbemba, D.; Sumerauer, D.; Liby, P.; Lassaletta, A.; Zamecnik, J.; Krskova, L.; Kyncl, M.; Stary, J.; Laughlin, S.; Arnoldo, A. Differential patterns of metastatic dissemination across medulloblastoma subgroups. J. Neurosurg. Pediatr., 2018, 21(2), 145-152.
[59]
Tavallai, M.; Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. Rationally repurposing ruxolitinib (Jakafi ((R))) as a solid tumor therapeutic. Front. Oncol., 2016, 6(17), 142.
[60]
Robison, N.J.; Yeo, K.K.; Berliner, A.P.; Malvar, J.; Sheard, M.A.; Margol, A.S.; Seeger, R.C.; Rushing, T.; Finlay, J.L.; Sposto, R.; Dhall, G. Phase I trial of dasatinib, lenalidomide, and temozolomide in children with relapsed or refractory central nervous system tumors. J. Neurooncol., 2018, 138(1), 199-207.