Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents

Author(s): Loredana Cappellacci*, Diego R. Perinelli, Filippo Maggi, Mario Grifantini and Riccardo Petrelli*

Volume 27, Issue 15, 2020

Page: [2449 - 2493] Pages: 45

DOI: 10.2174/0929867325666181016163110

Price: $65

Abstract

Histone Deacetylase (HDAC) inhibitors are a relatively new class of anti-cancer agents that play important roles in epigenetic or non-epigenetic regulation, inducing death, apoptosis, and cell cycle arrest in cancer cells. Recently, their use has been clinically validated in cancer patients resulting in the approval by the FDA of four HDAC inhibitors, vorinostat, romidepsin, belinostat and panobinostat, used for the treatment of cutaneous/peripheral T-cell lymphoma and multiple myeloma. Many more HDAC inhibitors are at different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. Also, clinical trials of several HDAC inhibitors for use as anti-cancer drugs (alone or in combination with other anti-cancer therapeutics) are ongoing. In the intensifying efforts to discover new, hopefully, more therapeutically efficacious HDAC inhibitors, molecular modelingbased rational drug design has played an important role. In this review, we summarize four major structural classes of HDAC inhibitors (hydroxamic acid derivatives, aminobenzamide, cyclic peptide and short-chain fatty acids) that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.

Keywords: Histone deacetylase inhibitors (HDACis), epigenetic, histone deacetylases and cancer, HDACis as antitumor agents, natural HDACis, QSAR of HDACis, molecular modeling studies of HDACis.

[1]
Minucci, S.; Pelicci, P.G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer, 2006, 6(1), 38-51.
[http://dx.doi.org/10.1038/nrc1779] [PMID: 16397526]
[2]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[3]
Weichert, W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett., 2009, 280(2), 168-176.
[http://dx.doi.org/10.1016/j.canlet.2008.10.047] [PMID: 19103471]
[4]
Gammoh, N.; Lam, D.; Puente, C.; Ganley, I.; Marks, P.A.; Jiang, X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6561-6565.
[http://dx.doi.org/10.1073/pnas.1204429109] [PMID: 22493260]
[5]
Khan, O.; La Thangue, N.B. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol. Cell Biol., 2012, 90(1), 85-94.
[http://dx.doi.org/10.1038/icb.2011.100] [PMID: 22124371]
[6]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[7]
Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res., 2007, 5(10), 981-989.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0324] [PMID: 17951399]
[8]
Chen, L.; Petrelli, R.; Felczak, K.; Gao, G.; Bonnac, L.; Yu, J.S.; Bennett, E.M.; Pankiewicz, K.W. Nicotinamide adenine dinucleotide based therapeutics. Curr. Med. Chem., 2008, 15(7), 650-670.
[http://dx.doi.org/10.2174/092986708783885282] [PMID: 18336280]
[9]
Drummond, D.C.; Noble, C.O.; Kirpotin, D.B.; Guo, Z.; Scott, G.K.; Benz, C.C. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 495-528.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095825] [PMID: 15822187]
[10]
Beckers, T.; Burkhardt, C.; Wieland, H.; Gimmnich, P.; Ciossek, T.; Maier, T.; Sanders, K. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int. J. Cancer, 2007, 121(5), 1138-1148.
[http://dx.doi.org/10.1002/ijc.22751] [PMID: 17455259]
[11]
Acharya, M.R.; Sparreboom, A.; Venitz, J.; Figg, W.D. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol. Pharmacol., 2005, 68(4), 917-932.
[http://dx.doi.org/10.1124/mol.105.014167] [PMID: 15955865]
[12]
Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol., 2007, 25(1), 84-90.
[http://dx.doi.org/10.1038/nbt1272] [PMID: 17211407]
[13]
Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4(4), 505-524.
[http://dx.doi.org/10.4155/fmc.12.3] [PMID: 22416777]
[14]
Steele, N.L.; Plumb, J.A.; Vidal, L.; Tjørnelund, J.; Knoblauch, P.; Rasmussen, A.; Ooi, C.E.; Buhl-Jensen, P.; Brown, R.; Evans, T.R.; DeBono, J.S. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res., 2008, 14(3), 804-810.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1786] [PMID: 18245542]
[15]
Revill, P.; Mealy, N.; Serradell, N.; Bolos, J.; Rosa, E. Panobinostat. Drugs Future, 2007, 32, 315-322.
[http://dx.doi.org/10.1358/dof.2007.032.04.1094476]
[16]
(a) Sanaei, M.; Kavoosi, F. Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv. Biomed. Res., 2019, 8, 63.
[http://dx.doi.org/10.4103/abr.abr_142_19] [PMID: 31737580]
(b)Hrabeta, J.; Stiborova, M.; Adam, V.; Kizek, R.; Eckschlager, T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, 158(2), 161-169.
[http://dx.doi.org/10.5507/bp.2013.085] [PMID: 24263215]
(c)Behera, J.; Jayaprakash, V.; Sinha, B.N. Histone deacetylase inhibitors: a review on class-I specific inhibition. Mini Rev. Med. Chem., 2015, 15(9), 731-750.
[http://dx.doi.org/10.2174/1389557515666150521162237] [PMID: 25994050]
[17]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[18]
Gregoretti, I.V.; Lee, Y.M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31.
[http://dx.doi.org/10.1016/j.jmb.2004.02.006] [PMID: 15050820]
[19]
Brosch, G.; Loidl, P.; Graessle, S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol. Rev., 2008, 32(3), 409-439.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00100.x] [PMID: 18221488]
[20]
Yang, X.J.; Grégoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol., 2005, 25(8), 2873-2884.
[http://dx.doi.org/10.1128/MCB.25.8.2873-2884.2005] [PMID: 15798178]
[21]
Fischle, W.; Kiermer, V.; Dequiedt, F.; Verdin, E. The emerging role of class II histone deacetylases. Biochem. Cell Biol., 2001, 79(3), 337-348.
[http://dx.doi.org/10.1139/o01-116] [PMID: 11467747]
[22]
Yang, X.J.; Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 206-218.
[http://dx.doi.org/10.1038/nrm2346] [PMID: 18292778]
[23]
Lian, Z.R.; Xu, Y.F.; Wang, X.B.; Gong, J.P.; Liu, Z.J. Suppression of histone deacetylase 11 promotes expression of IL-10 in Kupffer cells and induces tolerance following orthotopic liver transplantation in rats. J. Surg. Res., 2012, 174(2), 359-368.
[http://dx.doi.org/10.1016/j.jss.2010.12.035] [PMID: 21392795]
[24]
Villagra, A.; Cheng, F.; Wang, H.W.; Suarez, I.; Glozak, M.; Maurin, M.; Nguyen, D.; Wright, K.L.; Atadja, P.W.; Bhalla, K.; Pinilla-Ibarz, J.; Seto, E.; Sotomayor, E.M. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol., 2009, 10(1), 92-100.
[http://dx.doi.org/10.1038/ni.1673] [PMID: 19011628]
[25]
Buglio, D.; Khaskhely, N.M.; Voo, K.S.; Martinez-Valdez, H.; Liu, Y.J.; Younes, A. HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood, 2011, 117(10), 2910-2917.
[http://dx.doi.org/10.1182/blood-2010-08-303701] [PMID: 21239696]
[26]
Glozak, M.A.; Seto, E. Acetylation/deacetylation modulates the stability of DNA replication licensing factor Cdt1. J. Biol. Chem., 2009, 284(17), 11446-11453.
[http://dx.doi.org/10.1074/jbc.M809394200] [PMID: 19276081]
[27]
Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun., 2000, 273(2), 793-798.
[http://dx.doi.org/10.1006/bbrc.2000.3000] [PMID: 10873683]
[28]
(a)North, B.J.; Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol., 2004, 5(5), 224.
[http://dx.doi.org/10.1186/gb-2004-5-5-224] [PMID: 15128440]
(a)Yamamoto, H.; Schoonjans, K.; Auwerx, J. Sirtuin functions in health and disease. Mol. Endocrinol., 2007, 21(8), 1745-1755.
[http://dx.doi.org/10.1210/me.2007-0079] [PMID: 17456799]
[29]
Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun., 1999, 260(1), 273-279.
[http://dx.doi.org/10.1006/bbrc.1999.0897] [PMID: 10381378]
[30]
Michan, S.; Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J., 2007, 404(1), 1-13.
[http://dx.doi.org/10.1042/BJ20070140] [PMID: 17447894]
[31]
Avalos, J.L.; Bever, K.M.; Wolberger, C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol. Cell, 2005, 17(6), 855-868.
[http://dx.doi.org/10.1016/j.molcel.2005.02.022] [PMID: 15780941]
[32]
Hu, J.; Jing, H.; Lin, H. Sirtuin inhibitors as anticancer agents. Future Med. Chem., 2014, 6(8), 945-966.
[http://dx.doi.org/10.4155/fmc.14.44] [PMID: 24962284]
[33]
Bockman, M.R.; Kalinda, A.S.; Petrelli, R.; De la Mora-Rey, T.; Tiwari, D.; Liu, F.; Dawadi, S.; Nandakumar, M.; Rhee, K.Y.; Schnappinger, D.; Finzel, B.C.; Aldrich, C.C. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. J. Med. Chem., 2015, 58(18), 7349-7369.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00719] [PMID: 26299766]
[34]
Pankiewicz, K.W.; Petrelli, R.; Singh, R.; Felczak, K. Nicotinamide Adenine Dinucleotide Based Therapeutics, Update. Curr. Med. Chem., 2015, 22(34), 3991-4028.
[http://dx.doi.org/10.2174/0929867322666150821100720] [PMID: 26295463]
[35]
Kozako, T.; Suzuki, T.; Yoshimitsu, M.; Arima, N.; Honda, S.; Soeda, S. Anticancer agents targeted to sirtuins. Molecules, 2014, 19(12), 20295-20313.
[http://dx.doi.org/10.3390/molecules191220295] [PMID: 25486244]
[36]
Borradaile, N.M.; Pickering, J.G. NAD(+), sirtuins, and cardiovascular disease. Curr. Pharm. Des., 2009, 15(1), 110-117.
[http://dx.doi.org/10.2174/138161209787185742] [PMID: 19149606]
[37]
Bonda, D.J.; Lee, H.G.; Camins, A.; Pallàs, M.; Casadesus, G.; Smith, M.A.; Zhu, X. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol., 2011, 10(3), 275-279.
[http://dx.doi.org/10.1016/S1474-4422(11)70013-8] [PMID: 21349442]
[38]
Houtkooper, R.H.; Pirinen, E.; Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 225-238.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[39]
Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; Iyer, N.G.; Pérez-Rosado, A.; Calvo, E.; Lopez, J.A.; Cano, A.; Calasanz, M.J.; Colomer, D.; Piris, M.A.; Ahn, N.; Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet., 2005, 37(4), 391-400.
[http://dx.doi.org/10.1038/ng1531] [PMID: 15765097]
[40]
Hamze, A. How do we improve histone deacetylase inhibitor drug discovery? Expert Opin. Drug Discov., 2020, 1-3.
[http://dx.doi.org/10.1080/17460441.2020.1736032] [PMID: 32116055]
[41]
Peng, L.; Seto, E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb. Exp. Pharmacol., 2011, 206, 39-56.
[http://dx.doi.org/10.1007/978-3-642-21631-2_3] [PMID: 21879445]
[42]
Singh, B.N.; Zhang, G.; Hwa, Y.L.; Li, J.; Dowdy, S.C.; Jiang, S.W. Nonhistone protein acetylation as cancer therapy targets. Expert Rev. Anticancer Ther., 2010, 10(6), 935-954.
[http://dx.doi.org/10.1586/era.10.62] [PMID: 20553216]
[43]
Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[44]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[45]
Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; Reeder, C.; Joske, D.; Figg, W.D.; Gardner, E.R.; Steinberg, S.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Lade, S.; Fojo, A.T.; Bates, S.E. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol., 2009, 27(32), 5410-5417.
[http://dx.doi.org/10.1200/JCO.2008.21.6150] [PMID: 19826128]
[46]
Whittaker, S.J.; Demierre, M.F.; Kim, E.J.; Rook, A.H.; Lerner, A.; Duvic, M.; Scarisbrick, J.; Reddy, S.; Robak, T.; Becker, J.C.; Samtsov, A.; McCulloch, W.; Kim, Y.H. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol., 2010, 28(29), 4485-4491.
[http://dx.doi.org/10.1200/JCO.2010.28.9066] [PMID: 20697094]
[47]
Foss, F.; Advani, R.; Duvic, M.; Hymes, K.B.; Intragumtornchai, T.; Lekhakula, A.; Shpilberg, O.; Lerner, A.; Belt, R.J.; Jacobsen, E.D.; Laurent, G.; Ben-Yehuda, D.; Beylot-Barry, M.; Hillen, U.; Knoblauch, P.; Bhat, G.; Chawla, S.; Allen, L.F.; Pohlman, B. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br. J. Haematol., 2015, 168(6), 811-819.
[http://dx.doi.org/10.1111/bjh.13222] [PMID: 25404094]
[48]
Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto, T.; Okuhara, M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo), 1994, 47(3), 301-310.
[http://dx.doi.org/10.7164/antibiotics.47.301] [PMID: 7513682]
[49]
Lee, H.Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Li Shen, Y.; Chen, X.H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R.Y. Chen, X.H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R. . FDA Approval: Belinostat for the Treatment of Patients with Relapsed or Refractory Peripheral T-cell Lymphoma. Clin. Cancer Res., 2015, 21(12), 2666-2670.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3119] [PMID: 25802282]
[50]
Kabel, A.M.; Baali, F.H. Histone deacetylase inhibitors: a hope for cancer patients. J. Cancer Res. Treat, 2015, 3, 34-36.
[51]
Raedler, L.A. Farydak (Panobinostat): First HDAC inhibitor approved for patients with relapsed multiple myeloma. Am. Health Drug Benefits, 2016, 9(Spec Feature), 84-87.
[PMID: 27668050]
[52]
San-Miguel, J.F.; Hungria, V.T.; Yoon, S.S.; Beksac, M.; Dimopoulos, M.A.; Elghandour, A.; Jedrzejczak, W.W.; Günther, A.; Nakorn, T.N.; Siritanaratkul, N.; Corradini, P.; Chuncharunee, S.; Lee, J-J.; Schlossman, R.L.; Shelekhova, T.; Yong, K.; Tan, D.; Numbenjapon, T.; Cavenagh, J.D.; Hou, J.; LeBlanc, R.; Nahi, H.; Qiu, L.; Salwender, H.; Pulini, S.; Moreau, P.; Warzocha, K.; White, D.; Bladé, J.; Chen, W.; de la Rubia, J.; Gimsing, P.; Lonial, S.; Kaufman, J.L.; Ocio, E.M.; Veskovski, L.; Sohn, S.K.; Wang, M.C.; Lee, J.H.; Einsele, H.; Sopala, M.; Corrado, C.; Bengoudifa, B.R.; Binlich, F.; Richardson, P.G. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol., 2014, 15(11), 1195-1206.
[http://dx.doi.org/10.1016/S1470-2045(14)70440-1] [PMID: 25242045]
[53]
Richon, V.M. Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br. J. Cancer, 2006, 95, S2-S6.
[http://dx.doi.org/10.1038/sj.bjc.6603463]
[54]
Li, Y.; Wang, F.; Chen, X.; Wang, J.; Zhao, Y.; Li, Y.; He, B. Zinc-dependent Deacetylase (HDAC) Inhibitors with Different Zinc Binding Groups. Curr. Top. Med. Chem., 2019, 19(3), 223-241.
[http://dx.doi.org/10.2174/1568026619666190122144949] [PMID: 30674261]
[55]
Shi, W.; Lawrence, Y.R.; Choy, H.; Werner-Wasik, M.; Andrews, D.W.; Evans, J.J.; Judy, K.D.; Farrell, C.J.; Moshel, Y.; Berger, A.C.; Bar-Ad, V.; Dicker, A.P. Vorinostat as a radiosensitizer for brain metastasis: a phase I clinical trial. J. Neurooncol., 2014, 118(2), 313-319.
[http://dx.doi.org/10.1007/s11060-014-1433-2] [PMID: 24728831]
[56]
Sarfstein, R.; Bruchim, I.; Fishman, A.; Werner, H. The mechanism of action of the histone deacetylase inhibitor vorinostat involves interaction with the insulin-like growth factor signaling pathway. PLoS One, 2011, 6(9), e24468
[http://dx.doi.org/10.1371/journal.pone.0024468] [PMID: 21931726]
[57]
Méndez, M.; Custodio, A.; Provencio, M. New molecular targeted therapies for advanced non-small-cell lung cancer. J. Thorac. Dis., 2011, 3(1), 30-56.
[PMID: 22263060]
[58]
Ma, T.; Galimberti, F.; Erkmen, C.P.; Memoli, V.; Chinyengetere, F.; Sempere, L.; Beumer, J.H.; Anyang, B.N.; Nugent, W.; Johnstone, D.; Tsongalis, G.J.; Kurie, J.M.; Li, H.; Direnzo, J.; Guo, Y.; Freemantle, S.J.; Dragnev, K.H.; Dmitrovsky, E. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol. Cancer Ther., 2013, 12(8), 1545-1555.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0933] [PMID: 23686769]
[59]
Saelen, M.G.; Ree, A.H.; Kristian, A.; Fleten, K.G.; Furre, T.; Hektoen, H.H.; Flatmark, K. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma. Radiat. Oncol., 2012, 7, 165.
[http://dx.doi.org/10.1186/1748-717X-7-165] [PMID: 23017053]
[60]
Oki, Y.; Younes, A.; Copeland, A.; Hagemeister, F.; Fayad, L.E.; McLaughlin, P.; Shah, J.; Fowler, N.; Romaguera, J.; Kwak, L.W.; Pro, B. Phase I study of vorinostat in combination with standard CHOP in patients with newly diagnosed peripheral T-cell lymphoma. Br. J. Haematol., 2013, 162(1), 138-141.
[http://dx.doi.org/10.1111/bjh.12326] [PMID: 23590726]
[61]
Doi, T.; Hamaguchi, T.; Shirao, K.; Chin, K.; Hatake, K.; Noguchi, K.; Otsuki, T.; Mehta, A.; Ohtsu, A. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial. Int. J. Clin. Oncol., 2013, 18(1), 87-95.
[http://dx.doi.org/10.1007/s10147-011-0348-6] [PMID: 22234637]
[62]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[63]
Marks, P.A. Discovery and development of SAHA as an anticancer agent. Oncogene, 2007, 26(9), 1351-1356.
[http://dx.doi.org/10.1038/sj.onc.1210204] [PMID: 17322921]
[64]
Lane, A.A.; Chabner, B.A. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol., 2009, 27(32), 5459-5468.
[http://dx.doi.org/10.1200/JCO.2009.22.1291] [PMID: 19826124]
[65]
Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007, 26(37), 5541-5552.
[http://dx.doi.org/10.1038/sj.onc.1210620] [PMID: 17694093]
[66]
Foss, F.; Duvic, M.; Lerner, A.; Waksman, J.; Whittaker, S. Clinical Efficacy of Romidepsin in Tumor Stage and Folliculotropic Mycosis Fungoides. Clin. Lymphoma Myeloma Leuk., 2016, 16(11), 637-643.
[http://dx.doi.org/10.1016/j.clml.2016.08.009] [PMID: 27637428]
[67]
Duvic, M.; Bates, S.E.; Piekarz, R.; Eisch, R.; Kim, Y.H.; Lerner, A.; Robak, T.; Samtsov, A.; Becker, J.C.; McCulloch, W.; Waksman, J.; Whittaker, S. Responses to romidepsin in patients with cutaneous T-cell lymphoma and prior treatment with systemic chemotherapy. Leuk. Lymphoma, 2018, 59(4), 880-887.
[http://dx.doi.org/10.1080/10428194.2017.1361022] [PMID: 28853310]
[68]
Manal, M.; Chandrasekar, M.J.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.005] [PMID: 27239721]
[69]
Li, K.W.; Wu, J.; Xing, W.; Simon, J.A. Total synthesis of the antitumor depsipeptide FR-901,228. J. Am. Chem. Soc., 1996, 118, 7237-7248.
[http://dx.doi.org/10.1021/ja9613724]
[70]
Nakajima, H.; Kim, Y.B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res., 1998, 241(1), 126-133.
[http://dx.doi.org/10.1006/excr.1998.4027] [PMID: 9633520]
[71]
Shigematsu, N.; Ueda, H.; Takase, S.; Tanaka, H.; Yamamoto, K.; Tada, T. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J. Antibiot. (Tokyo), 1994, 47(3), 311-314.
[http://dx.doi.org/10.7164/antibiotics.47.311] [PMID: 8175483]
[72]
Ueda, H.; Manda, T.; Matsumoto, S.; Mukumoto, S.; Nishigaki, F.; Kawamura, I.; Shimomura, K. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J. Antibiot. (Tokyo), 1994, 47(3), 315-323.
[http://dx.doi.org/10.7164/antibiotics.47.315] [PMID: 8175484]
[73]
Piekarz, R.L.; Frye, R.; Prince, H.M.; Kirschbaum, M.H.; Zain, J.; Allen, S.L.; Jaffe, E.S.; Ling, A.; Turner, M.; Peer, C.J.; Figg, W.D.; Steinberg, S.M.; Smith, S.; Joske, D.; Lewis, I.; Hutchins, L.; Craig, M.; Fojo, A.T.; Wright, J.J.; Bates, S.E. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood, 2011, 117(22), 5827-5834.
[http://dx.doi.org/10.1182/blood-2010-10-312603] [PMID: 21355097]
[74]
Karthik, S.; Sankar, R.; Varunkumar, K.; Ravikumar, V. Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells. Biomed. Pharmacother., 2014, 68(3), 327-334.
[http://dx.doi.org/10.1016/j.biopha.2014.01.002] [PMID: 24485799]
[75]
Robertson, F.M.; Chu, K.; Boley, K.M.; Ye, Z.; Liu, H.; Wright, M.C.; Moraes, R.; Zhang, X.; Green, T.L.; Barsky, S.H.; Heise, C.; Cristofanilli, M. The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J. Exp. Ther. Oncol., 2013, 10(3), 219-233.
[PMID: 24416998]
[76]
Jones, S.F.; Infante, J.R.; Spigel, D.R.; Peacock, N.W.; Thompson, D.S.; Greco, F.A.; McCulloch, W.; Burris, H.A., III Phase 1 results from a study of romidepsin in combination with gemcitabine in patients with advanced solid tumors. Cancer Invest., 2012, 30(6), 481-486.
[http://dx.doi.org/10.3109/07357907.2012.675382] [PMID: 22536933]
[77]
Amiri-Kordestani, L.; Luchenko, V.; Peer, C.J.; Ghafourian, K.; Reynolds, J.; Draper, D.; Frye, R.; Woo, S.; Venzon, D.; Wright, J.; Skarulis, M.; Figg, W.D.; Fojo, T.; Bates, S.E.; Piekarz, R.L. Phase I trial of a new schedule of romidepsin in patients with advanced cancers. Clin. Cancer Res., 2013, 19(16), 4499-4507.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0095] [PMID: 23757352]
[78]
Delarue, R.; Zinzani, P.L.; Hertzberg, M.S.; Kim, W.S.; Caballero, D.; Pezzutto, A.; Andre, M.; Da Silva, M.G.; Gaulard, P.; Bertrand Coiffier, B. ROCHOP study: A phase III randomized study of CHOP compared to romidepsin-CHOP in untreated peripheral T-cell lymphoma. J. Clin. Oncol., 2013, 31, 15s.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.tps8616]
[79]
Poole, R.M. Belinostat: first global approval. Drugs, 2014, 74(13), 1543-1554.
[http://dx.doi.org/10.1007/s40265-014-0275-8] [PMID: 25134672]
[80]
Giaccone, G.; Rajan, A.; Berman, A.; Kelly, R.J.; Szabo, E. LopezChavez, A.; Trepel, J.; Lee, M.J.; Cao, L.; Espinoza-Delgado, I.; Spittler, J.; Loehrer, P.J. Sr. Phase II study of belinostat in patients with recurrent or advanced thymic epithelial tumors. J. Clin. Oncol., 2011, 29, 2052-2059.
[http://dx.doi.org/10.1200/JCO.2010.32.4467] [PMID: 21502553]
[81]
Mackay, H.J.; Hirte, H.; Colgan, T.; Covens, A.; MacAlpine, K.; Grenci, P.; Wang, L.; Mason, J.; Pham, P.A.; Tsao, M.S.; Pan, J.; Zwiebel, J.; Oza, A.M. Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. Eur. J. Cancer, 2010, 46(9), 1573-1579.
[http://dx.doi.org/10.1016/j.ejca.2010.02.047] [PMID: 20304628]
[82]
Dizon, D.S.; Blessing, J.A.; Penson, R.T.; Drake, R.D.; Walker, J.L.; Johnston, C.M.; Disilvestro, P.A.; Fader, A.N. A phase II evaluation of belinostat and carboplatin in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol., 2012, 125(2), 367-371.
[http://dx.doi.org/10.1016/j.ygyno.2012.02.019] [PMID: 22366594]
[83]
Dizon, D.S.; Damstrup, L.; Finkler, N.J.; Lassen, U.; Celano, P.; Glasspool, R.; Crowley, E.; Lichenstein, H.S.; Knoblach, P.; Penson, R.T. Phase II activity of belinostat (PXD-101), carboplatin, and paclitaxel in women with previously treated ovarian cancer. Int. J. Gynecol. Cancer, 2012, 22, 979-986.
[84]
Battaglia, A.; Buzzonetti, A.; Fossati, M.; Scambia, G.; Fattorossi, A.; Madiyalakan, M.R.; Yolanda, D. ; Mahnke, Y.D.; Nicodemus, C. Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients. Cancer Immunol. Immunother., 2020, 69, 383-397.
[http://dx.doi.org/10.1007/s00262-020-02537-4]
[85]
Kirschbaum, M.H.; Foon, K.A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.M.; Newman, E.M. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk. Lymphoma, 2014, 55(10), 2301-2304.
[http://dx.doi.org/10.3109/10428194.2013.877134] [PMID: 24369094]
[86]
Thomas, A.; Rajan, A.; Szabo, E.; Tomita, Y.; Carter, C.A.; Scepura, B.; Lopez-Chavez, A.; Lee, M.J.; Redon, C.E.; Frosch, A.; Peer, C.J.; Chen, Y.; Piekarz, R.; Steinberg, S.M.; Trepel, J.B.; Figg, W.D.; Schrump, D.S.; Giaccone, G. A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: a clinical and translational study. Clin. Cancer Res., 2014, 20(21), 5392-5402.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0968] [PMID: 25189481]
[87]
Ma, B.B.; Sung, F.; Tao, Q.; Poon, F.F.; Lui, V.W.; Yeo, W.; Chan, S.L.; Chan, A.T. The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines. Invest. New Drugs, 2010, 28(2), 107-114.
[http://dx.doi.org/10.1007/s10637-009-9219-7] [PMID: 19172229]
[88]
Savickiene, J.; Treigyte, G.; Valiuliene, G.; Stirblyte, I.; Navakauskiene, R. Epigenetic and molecular mechanisms underlying the antileukemic activity of the histone deacetylase inhibitor belinostat in human acute promyelocytic leukemia cells. Anticancer Drugs, 2014, 25(8), 938-949.
[http://dx.doi.org/10.1097/CAD.0000000000000122] [PMID: 24800886]
[89]
Mack, G.S. To selectivity and beyond. Nat. Biotechnol., 2010, 28(12), 1259-1266.
[http://dx.doi.org/10.1038/nbt.1724] [PMID: 21139608]
[90]
Duvic, M.; Dummer, R.; Becker, J.C.; Poulalhon, N.; Ortiz Romero, P.; Grazia Bernengo, M.; Lebbé, C.; Assaf, C.; Squier, M.; Williams, D.; Marshood, M.; Tai, F.; Prince, H.M. Panobinostat activity in both bexarotene-exposed and -naïve patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur. J. Cancer, 2013, 49(2), 386-394.
[http://dx.doi.org/10.1016/j.ejca.2012.08.017] [PMID: 22981498]
[91]
Prince, H.M.; Bishton, M. Panobinostat (LBH589): a novel pan-deacetylase inhibitor with activity in T lymphoma. Hematol. Meeting Rep., 2009, 3, 33-38.
[92]
Fukutomi, A.; Hatake, K.; Matsui, K.; Sakajiri, S.; Hirashima, T.; Tanii, H.; Kobayashi, K.; Yamamoto, N. A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors. Invest. New Drugs, 2012, 30(3), 1096-1106.
[http://dx.doi.org/10.1007/s10637-011-9666-9] [PMID: 21484248]
[93]
Younes, A.; Sureda, A.; Ben-Yehuda, D.; Zinzani, P.L.; Ong, T.C.; Prince, H.M.; Harrison, S.J.; Kirschbaum, M.; Johnston, P.; Gallagher, J.; Le Corre, C.; Shen, A.; Engert, A. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a phase II study. J. Clin. Oncol., 2012, 30(18), 2197-2203.
[http://dx.doi.org/10.1200/JCO.2011.38.1350] [PMID: 22547596]
[94]
Platzbecker, U.; Al-Ali, H.K.; Gattermann, N.; Haase, D.; Janzen, V.; Krauter, J.; Götze, K.; Schlenk, R.; Nolte, F.; Letsch, A.; Ottmann, O.G.; Kündgen, A.; Lübbert, M.; Germing, U.; Wermke, M.; Reinhard, H.; Weiss, C.; Lieder, K.; Ehninger, G.; Leismann, O.; Giagounidis, A. Phase 2 study of oral panobinostat (LBH589) with or without erythropoietin in heavily transfusion-dependent IPSS low or int-1 MDS patients. Leukemia, 2014, 28(3), 696-698.
[http://dx.doi.org/10.1038/leu.2013.325] [PMID: 24186004]
[95]
Dimicoli, S.; Jabbour, E.; Borthakur, G.; Kadia, T.; Estrov, Z.; Yang, H.; Kelly, M.; Pierce, S.; Kantarjian, H.; Garcia-Manero, G. Phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in patients with low or intermediate-1 risk myelodysplastic syndrome. Am. J. Hematol., 2012, 87(1), 127-129.
[http://dx.doi.org/10.1002/ajh.22198] [PMID: 22072492]
[96]
Laubach, J.P.; Moreau, P.; San-Miguel, J.F.; Richardson, P.G. Panobinostat for the treatment of multiple myeloma. Clin. Cancer Res., 2015, 21(21), 4767-4773.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0530] [PMID: 26362997]
[97]
Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999, 401(6749), 188-193.
[http://dx.doi.org/10.1038/43710] [PMID: 10490031]
[98]
Yoshida, S.; Ohya, Y.; Hirose, R.; Nakano, A.; Anraku, Y. STT10, a novel class-D VPS yeast gene required for osmotic integrity related to the PKC1/STT1 protein kinase pathway. Gene, 1995, 160(1), 117-122.
[http://dx.doi.org/10.1016/0378-1119(95)00214-Q] [PMID: 7628704]
[99]
Vanhaecke, T.; Papeleu, P.; Elaut, G.; Rogiers, V. Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr. Med. Chem., 2004, 11(12), 1629-1643.
[http://dx.doi.org/10.2174/0929867043365099] [PMID: 15180568]
[100]
Hoshikawa, Y.; Kwon, H.J.; Yoshida, M.; Horinouchi, S.; Beppu, T. Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp. Cell Res., 1994, 214(1), 189-197.
[http://dx.doi.org/10.1006/excr.1994.1248] [PMID: 8082721]
[101]
Herold, C.; Ganslmayer, M.; Ocker, M.; Hermann, M.; Geerts, A.; Hahn, E.G.; Schuppan, D. The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J. Hepatol., 2002, 36(2), 233-240.
[http://dx.doi.org/10.1016/S0168-8278(01)00257-4] [PMID: 11830335]
[102]
Strait, K.A.; Dabbas, B.; Hammond, E.H.; Warnick, C.T.; Iistrup, S.J.; Ford, C.D.; Ford, C.D. Cell cycle blockade and differentiation of ovarian cancer cells by the histone deacetylase inhibitor trichostatin A are associated with changes in p21, Rb, and Id proteins. Mol. Cancer Ther., 2002, 1(13), 1181-1190.
[PMID: 12479699]
[103]
Donadelli, M.; Costanzo, C.; Faggioli, L.; Scupoli, M.T.; Moore, P.S.; Bassi, C.; Scarpa, A.; Palmieri, M. Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Mol. Carcinog., 2003, 38(2), 59-69.
[http://dx.doi.org/10.1002/mc.10145] [PMID: 14502645]
[104]
Park, W.H.; Jung, C.W.; Park, J.O.; Kim, K.; Kim, W.S.; Im, Y.H.; Lee, M.H.; Kang, W.K.; Park, K. Trichostatin inhibits the growth of ACHN renal cell carcinoma cells via cell cycle arrest in association with p27, or apoptosis. Int. J. Oncol., 2003, 22(5), 1129-1134.
[http://dx.doi.org/10.3892/ijo.22.5.1129] [PMID: 12684681]
[105]
Margueron, R.; Licznar, A.; Lazennec, G.; Vignon, F.; Cavaillès, V. Oestrogen receptor α increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. J. Endocrinol., 2003, 179(1), 41-53.
[http://dx.doi.org/10.1677/joe.0.1790041] [PMID: 14529564]
[106]
Kelly, W.K.; O’Connor, O.A.; Krug, L.M.; Chiao, J.H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J.P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P.A.; Scher, H.; Richon, V.M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol., 2005, 23(17), 3923-3931.
[http://dx.doi.org/10.1200/JCO.2005.14.167] [PMID: 15897550]
[107]
O’Connor, O.A.; Heaney, M.L.; Schwartz, L.; Richardson, S.; Willim, R.; MacGregor-Cortelli, B.; Curly, T.; Moskowitz, C.; Portlock, C.; Horwitz, S.; Zelenetz, A.D.; Frankel, S.; Richon, V.; Marks, P.; Kelly, W.K. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol., 2006, 24(1), 166-173.
[http://dx.doi.org/10.1200/JCO.2005.01.9679] [PMID: 16330674]
[108]
Kelly, W.K.; Richon, V.M.; O’Connor, O.; Curley, T.; MacGregor-Curtelli, B.; Tong, W.; Klang, M.; Schwartz, L.; Richardson, S.; Rosa, E.; Drobnjak, M.; Cordon-Cordo, C.; Chiao, J.H.; Rifkind, R.; Marks, P.A.; Scher, H. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res., 2003, 9(10 Pt 1), 3578-3588.
[PMID: 14506144]
[109]
Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J.H.; Reilly, J.F.; Ricker, J.L.; Richon, V.M.; Frankel, S.R. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood, 2007, 109(1), 31-39.
[http://dx.doi.org/10.1182/blood-2006-06-025999] [PMID: 16960145]
[110]
Bhalla, S.; Balasubramanian, S.; David, D.; Sirisawad, M.; Joseph Buggy, J.; Mauro, L.; Prachand, S.; Miller, R.; Gordon, L.I.; Andrew, M.; Evens, A.M. The histone deacetylase inhibitor PCI-24781 induces caspase and ROS-dependent apoptosis through NF-kB and is synergistic with Bortezomib in lymphoma cells. Cancer Res., 2009, 15, 3354-3365.
[PMID: 19417023]
[111]
Morschhauser, F.; Terriou, L.; Coiffier, B.; Bachy, E.; Varga, A.; Kloos, I.; Lelièvre, H.; Sarry, A.L.; Depil, S.; Ribrag, V. Phase 1 study of the oral histone deacetylase inhibitor abexinostat in patients with Hodgkin lymphoma, non-Hodgkin lymphoma, or chronic lymphocytic leukaemia. Invest. New Drugs, 2015, 33(2), 423-431.
[http://dx.doi.org/10.1007/s10637-015-0206-x] [PMID: 25600050]
[112]
Ribrag, V.; Kim, W.S.; Bouabdallah, R.; Lim, S.T.; Coiffier, B.; Illes, A.; Lemieux, B.; Dyer, M.J.S.; Offner, F.; Felloussi, Z.; Kloos, I.; Luan, Y.; Vezan, R.; Graef, T.; Morschhauser, F. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: results of a phase II study. Haematologica, 2017, 102(5), 903-909.
[http://dx.doi.org/10.3324/haematol.2016.154377] [PMID: 28126962]
[113]
Evens, A.M.; Balasubramanian, S.; Vose, J.M.; Harb, W.; Gordon, L.I.; Langdon, R.; Sprague, J.; Sirisawad, M.; Mani, C.; Yue, J.; Luan, Y.; Horton, S.; Graef, T.; Bartlett, N.L. A Phase I/II multicenter, open-label study of the oral histone deacetylase inhibitor abexinostat in relapsed/refractory lymphoma. Clin. Cancer Res., 2016, 22, 1060-1068.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0624]
[114]
Ganai, S.A. Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J. Chemother., 2016, 28(4), 247-254.
[http://dx.doi.org/10.1080/1120009X.2016.1145375] [PMID: 27121910]
[115]
Rambaldi, A.; Dellacasa, C.M.; Finazzi, G.; Carobbio, A.; Ferrari, M.L.; Guglielmelli, P.; Gattoni, E.; Salmoiraghi, S.; Finazzi, M.C.; Di Tollo, S.; D’Urzo, C.; Vannucchi, A.M.; Barosi, G.; Barbui, T. A pilot study of the Histone-Deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br. J. Haematol., 2010, 150(4), 446-455.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08266.x] [PMID: 20560970]
[116]
Furlan, A.; Monzani, V.; Reznikov, L.L.; Leoni, F.; Fossati, G.; Modena, D.; Mascagni, P.; Dinarello, C.A. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol. Med., 2011, 17(5-6), 353-362.
[http://dx.doi.org/10.2119/molmed.2011.00020] [PMID: 21365126]
[117]
Finazzi, G.; Vannucchi, A.M.; Martinelli, V.; Ruggeri, M.; Nobile, F.; Specchia, G.; Pogliani, E.M.; Olimpieri, O.M.; Fioritoni, G.; Musolino, C.; Cilloni, D.; Sivera, P.; Barosi, G.; Finazzi, M.C.; Di Tollo, S.; Demuth, T.; Barbui, T.; Rambaldi, A. A phase II study of Givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br. J. Haematol., 2013, 161(5), 688-694.
[http://dx.doi.org/10.1111/bjh.12332] [PMID: 23573950]
[118]
Bergman, J.A.; Woan, K.; Perez-Villarroel, P.; Villagra, A.; Sotomayor, E.M.; Kozikowski, A.P. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J. Med. Chem., 2012, 55(22), 9891-9899.
[http://dx.doi.org/10.1021/jm301098e] [PMID: 23009203]
[119]
Novotny-Diermayr, V.; Hart, S.; Goh, K.C.; Cheong, A.; Ong, L-C.; Hentze, H.; Pasha, M.K.; Jayaraman, R.; Ethirajulu, K.; Wood, J.M. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J., 2012, 2(5), e69
[http://dx.doi.org/10.1038/bcj.2012.14] [PMID: 22829971]
[120]
Garcia-Manero, G.; Montalban-Bravo, G.; Berdeja, J.G.; Abaza, Y.; Jabbour, E.; Essell, J.; Lyons, R.M.; Ravandi, F.; Maris, M.; Heller, B.; DeZern, A.E.; Babu, S.; Wright, D.; Anz, B.; Boccia, R.; Komrokji, R.S.; Kuriakose, P.; Reeves, J.; Sekeres, M.A.; Kantarjian, H.M.; Ghalie, R.; Roboz, G.J. Phase 2, randomized, double-blind study of pracinostat in combination with azacitidine in patients with untreated, higher-risk myelodysplastic syndromes. Cancer, 2017, 123(6), 994-1002.
[http://dx.doi.org/10.1002/cncr.30533] [PMID: 28094841]
[121]
Zorzi, A.P.; Bernstein, M.; Samson, Y.; Wall, D.A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. Pediatr. Blood Cancer, 2013, 60(11), 1868-1874.
[http://dx.doi.org/10.1002/pbc.24694] [PMID: 23893953]
[122]
Mandl-Weber, S.; Meinel, F.G.; Jankowsky, R.; Oduncu, F.; Schmidmaier, R.; Baumann, P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol., 2010, 149(4), 518-528.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08124.x] [PMID: 20201941]
[123]
Brunetto, A.T.; Ang, J.E.; Lal, R.; Olmos, D.; Molife, L.R.; Kristeleit, R.; Parker, A.; Casamayor, I.; Olaleye, M.; Mais, A.; Hauns, B.; Strobel, V.; Hentsch, B.; de Bono, J.S. First-in-human, pharmacokinetic and pharmacodynamic phase I study of Resminostat, an oral histone deacetylase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2013, 19(19), 5494-5504.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0735] [PMID: 24065624]
[124]
Walewski, J.; Paszkiewicz-Kozik, E.; Borsaru, G.; Moicean, A.; Warszewska, A.; Strobel, K.; Biggi, A.; Hauns, B.; Mais, A.; Henning, S.W. Resminostat in Relapsed or Refractory Hodgkin Lymphoma: Initial Results of the Saphire phase II Trial with a Novel Oral Histone Deacetylase (HDAC) Inhibitor. Blood, 2010, 116, 2811.
[http://dx.doi.org/10.1182/blood.V116.21.2811.2811]
[125]
Walewski, J.; Paszkiewicz-Kozik, E.; Warszewska, A.; Borsaru, G.; Moicean, A.; Hellmann, A.; Mayer, J.; Hauns, B.; Mais, A.; Henning, S.W. Final results of the Phase II saphire trial of resminostat (4SC-201) in patients with relapsed/refractory Hodgkin lymphoma. Blood, 2011, 118, 2675.
[http://dx.doi.org/10.1182/blood.V118.21.2675.2675]
[126]
Bitzer, M.; Ganten, T.M.; Woerns, M.A.; Siveke, J.T.; Dollinger, M.M.; Scheulen, M.E.; Wege, H.; Giannini, E.G.; Cillo, U.; Trevisani, F. Resminostat in advanced hepatocellular carcinoma (HCC): Overall survival subgroup analysis of prognostic factors in the shelter trial. J. Clin. Oncol., 2013., 31e15088
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e15088]
[127]
Cai, X.; Zhai, H.X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C.J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(5), 2000-2009.
[http://dx.doi.org/10.1021/jm901453q] [PMID: 20143778]
[128]
Lai, C.J.; Bao, R.; Tao, X.; Wang, J.; Atoyan, R.; Qu, H.; Wang, D.G.; Yin, L.; Samson, M.; Forrester, J.; Zifcak, B.; Xu, G.X.; DellaRocca, S.; Zhai, H.X.; Cai, X.; Munger, W.E.; Keegan, M.; Pepicelli, C.V.; Qian, C. CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res., 2010, 70(9), 3647-3656.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3360] [PMID: 20388807]
[129]
Dasmahapatra, G.; Patel, H.; Friedberg, J.; Quayle, S.N.; Jones, S.S.; Grant, S. In vitro and in vivo interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib in non-Hodgkin lymphoma cells. Mol. Cancer Ther., 2014, 13(12), 2886-2897.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0220] [PMID: 25239935]
[130]
Cosenza, M.; Civallero, M.; Pozzi, S.; Marcheselli, L.; Sacchi, S. Preclinical screening of the HDAC6 inhibitor Rocilinostat (ACY-1215) combined with bendamustine in lymphoma cell lines. Blood, 2014, 21, 3124.
[http://dx.doi.org/10.1182/blood.V124.21.3124.3124]
[131]
Bush, M.L.; Oblinger, J.; Brendel, V.; Santarelli, G.; Huang, J.; Akhmametyeva, E.M.; Burns, S.S.; Wheeler, J.; Davis, J.; Yates, C.W.; Chaudhury, A.R.; Kulp, S.; Chen, C.S.; Chang, L.S.; Welling, D.B.; Jacob, A. AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro-oncol., 2011, 13(9), 983-999.
[http://dx.doi.org/10.1093/neuonc/nor072] [PMID: 21778190]
[132]
Sargeant, A.M.; Rengel, R-C.; Kulp, S.K.; Klein, R.D.; Clinton, S.K.; Wang, Y.C.; Chen, C.S. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res., 2008, 68(10), 3999-4009.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0203] [PMID: 18483287]
[133]
Lu, Q.; Wang, D.S.; Chen, C-S.; Hu, Y-D.; Chen, C-S. Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J. Med. Chem., 2005, 48(17), 5530-5535.
[http://dx.doi.org/10.1021/jm0503749] [PMID: 16107152]
[134]
Stühmer, T.; Arts, J.; Chatterjee, M.; Borawski, J.; Wolff, A.; King, P.; Einsele, H.; Leo, E.; Bargou, R.C. Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. Br. J. Haematol., 2010, 149(4), 529-536.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08126.x] [PMID: 20331455]
[135]
Carol, H.; Gorlick, R.; Kolb, E.A. Morton, C.L.; Manesh, D.M.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Maris, J.M.; Wozniak, A.; Hickson, H.; Lyalin, D.; Kurmasheva, R.T.; Houghton, P.J.; Smith, M.A.; Lock, R. Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the pediatric preclinical testing. Pediatr. Blood Cancer, 2014, 61, 245-252.
[http://dx.doi.org/10.1002/pbc.24724] [PMID: 24038993]
[136]
Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc., 2010, 132(31), 10842-10846.
[http://dx.doi.org/10.1021/ja102758v] [PMID: 20614936]
[137]
Namdar, M.; Perez, G.; Ngo, L.; Marks, P.A. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20003-20008.
[http://dx.doi.org/10.1073/pnas.1013754107] [PMID: 21037108]
[138]
Nakashima, H.; Kaufmann, J.K.; Wang, P.Y.; Nguyen, T.; Speranza, M.C.; Kasai, K.; Okemoto, K.; Otsuki, A.; Nakano, I.; Fernandez, S.; Goins, W.F.; Grandi, P.; Glorioso, J.C.; Lawler, S.; Cripe, T.P.; Chiocca, E.A. Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma. J. Clin. Invest., 2015, 125(11), 4269-4280.
[http://dx.doi.org/10.1172/JCI80713] [PMID: 26524593]
[139]
Aldana-Masangkay, G.I.; Rodriguez-Gonzalez, A.; Lin, T. Ikeda, A.K.; Hsieh, Y.T.; Kim,Y.M.; Lome nick, B.; Okemoto, K.; Landaw, E.M.; Wang, D.; Mazitschek, R.; Bradner, J.E.; Sakamoto, K.M. Tubacin suppresses proli-feration and induces apoptosis of acute lymphoblastic leukemia cells. Leuk. Lymphoma, 2011, 8, 1544-1555.
[http://dx.doi.org/10.3109/10428194.2011.570821] [PMID: 21699378]
[140]
Soragni, E.; Chou, C.J.; Rusche, J.R.; Gottesfeld, J-M. Mechanism of Action of 2-Aminobenzamide HDAC Inhibitors in Reversing Gene Silencing in Friedreich’s Ataxia. Front. Neurol., 2015, 6, 44.
[http://dx.doi.org/10.3389/fneur.2015.00044] [PMID: 25798128]
[141]
Komatsu, Y.; Tomizaki, K.Y.; Tsukamoto, M.; Kato, T.; Nishino, N.; Sato, S.; Yamori, T.; Tsuruo, T.; Furumai, R.; Yoshida, M.; Horinouchi, S.; Hayashi, H. Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. Cancer Res., 2001, 61(11), 4459-4466.
[PMID: 11389076]
[142]
Murakami, K.; Matsubara, H.; Hoshino, I.; Akutsu, Y.; Miyazawa, Y.; Matsushita, K.; Sakata, H.; Nishimori, T.; Usui, A.; Kano, M.; Nishino, N.; Yoshida, M. CHAP31 induces apoptosis only via the intrinsic pathway in human esophageal cancer cells. Oncology, 2010, 78(1), 62-74.
[http://dx.doi.org/10.1159/000292362] [PMID: 20215787]
[143]
Bevins, R.L.; Zimmer, S.G. It’s about time: scheduling alters effect of histone deacetylase inhibitors on camptothecin-treated cells. Cancer Res., 2005, 65(15), 6957-6966.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0836] [PMID: 16061681]
[144]
Donadelli, M.; Costanzo, C.; Beghelli, S.; Scupoli, M.T.; Dandrea, M.; Bonora, A.; Piacentini, P.; Budillon, A.; Caraglia, M.; Scarpa, A.; Palmieri, M. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim. Biophys. Acta, 2007, 1773(7), 1095-1106.
[http://dx.doi.org/10.1016/j.bbamcr.2007.05.002] [PMID: 17555830]
[145]
Fuino, L.; Bali, P.; Wittmann, S.; Donapaty, S.; Guo, F.; Yamaguchi, H.; Wang, H.G.; Atadja, P.; Bhalla, K. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther., 2003, 2(10), 971-984.
[PMID: 14578462]
[146]
Meli, M.; Tolomeo, M.; Grifantini, M.; Mai, A.; Cappellacci, L.; Petrelli, R.; Rotili, D.; Ferro, A.; Saiko, P.; Szekeres, T.; Dusonchet, L. Histone deacetylase inhibition modulates deoxyribonucleotide pools and enhances the antitumor effects of the ribonucleotide reductase inhibitor 3′-C-methyladenosine in leukaemia cells. Int. J. Oncol., 2011, 38(5), 1427-1436.
[http://dx.doi.org/10.3892/ijo.2011.943] [PMID: 21318222]
[147]
Franchetti, P.; Cappellacci, L.; Pasqualini, M.; Petrelli, R.; Vita, P.; Jayaram, H.N.; Horvath, Z.; Szekeres, T.; Grifantini, M. Antitumor activity of C-methyl-β-D-ribofuranosyladenine nucleoside ribonucleotide reductase inhibitors. J. Med. Chem., 2005, 48(15), 4983-4989.
[http://dx.doi.org/10.1021/jm048944c] [PMID: 16033277]
[148]
(a)Cappellacci, L.; Franchetti, P.; Petrelli, R.; Riccioni, S.; Vita, P.; Jayaram, H.N.; Grifantini, M. Purine and pyrimidine nucleoside analogs of 3′-C-methyladenosine as antitumor agents. Collect. Czech. Chem. Commun., 2006, 71, 1088-1098.
[http://dx.doi.org/10.1135/cccc20061088]
(b)Cappellacci, L.; Franchetti, P.; Vita, P.; Petrelli, R.; Lavecchia, A.; Jayaram, H.N.; Saiko, P.; Graser, G.; Szekeres, T.; Grifantini, M. Ribose-modified purine nucleosides as ribonucleotide reductase inhibitors. Synthesis, antitumor activity, and molecular modeling of N6-substituted 3′-C-methyladenosine derivatives. J. Med. Chem., 2008, 51(14), 4260-4269.
[http://dx.doi.org/10.1021/jm800205c] [PMID: 18588281]
(c)Cappellacci, L.; Petrelli, R.; Franchetti, P.; Vita, P.; Kusumanchi, P.; Kumar, M.; Jayaram, H.N.; Zhou, B.; Yen, Y.; Grifantini, M. Synthesis and biological activity of novel N6-substituted and 2,N6-disubstituted adenine ribo- and 3′-C-methyl-ribonucleosides as antitumor agents. Eur. J. Med. Chem., 2011, 46(5), 1499-1504.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.055] [PMID: 21349610]
[149]
Mai, A.; Massa, S.; Pezzi, R.; Valente, S.; Loidl, P.; Brosch, G. Synthesis and biological evaluation of 2-, 3-, and 4-acylaminocinnamyl-N-hydroxyamides as novel synthetic HDAC inhibitors. J. Med. Chem., 2005, 3, 245-254.
[http://dx.doi.org/10.2174/1573406053765431]
[150]
Stauber, R.H.; Knauer, S.K.; Habtemichael, N.; Bier, C.; Unruhe, B.; Weisheit, S.; Spange, S.; Nonnenmacher, F.; Fetz, V.; Ginter, T.; Reichardt, S.; Liebmann, C.; Schneider, G.; Krämer, O.H. A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget, 2012, 3(1), 31-43.
[http://dx.doi.org/10.18632/oncotarget.430] [PMID: 22289787]
[151]
Sung, V.; Richard, N.; Brady, H.; Maier, A.; Kelter, G.; Heise, C. Histone deacetylase inhibitor MGCD0103 synergizes with gemcitabine in human pancreatic cells. Cancer Sci., 2011, 102(6), 1201-1207.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01921.x] [PMID: 21375679]
[152]
Banerji, U.; van Doorn, L.; Papadatos-Pastos, D.; Kristeleit, R.; Debnam, P.; Tall, M.; Stewart, A.; Raynaud, F.; Garrett, M.D.; Toal, M.; Hooftman, L.; De Bono, J.S.; Verweij, J.; Eskens, F.A. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin. Cancer Res., 2012, 18(9), 2687-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3165] [PMID: 22553374]
[153]
Dong, M.; Ning, Z-Q.; Xing, P-Y.; Xu, J-L.; Cao, H.X.; Dou, G.F.; Meng, Z.Y.; Shi, Y.K.; Lu, X.P.; Feng, F.Y. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother. Pharmacol., 2012, 69(6), 1413-1422.
[http://dx.doi.org/10.1007/s00280-012-1847-5] [PMID: 22362161]
[154]
Chan, T.S.; Tse, E.; Kwong, Y.L. Chidamide in the treatment of peripheral T-cell lymphoma. OncoTargets Ther., 2017, 10, 347-352.
[http://dx.doi.org/10.2147/OTT.S93528] [PMID: 28138258]
[155]
Saito, A.; Yamashita, T.; Mariko, Y. Nosaka, Y.; Tsuchiya, K.; Ando, T.; Suzuki, T.; Tsuruo, T.; Nakanishi, O. A synthetic inhibitor of histone deacetylase, MS-275, with marked in vivo antitumor activity against human umors. Proc. Natl. Acad. Sci. USA, 1999, 6, 4592-4597.
[http://dx.doi.org/10.1073/pnas.96.8.4592] [PMID: 10200307]
[156]
Pili, R.; Salumbides, B.; Zhao, M.; Altiok, S.; Qian, D.; Zwiebel, J.; Carducci, M.A.; Rudek, M.A. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer, 2012, 106(1), 77-84.
[http://dx.doi.org/10.1038/bjc.2011.527] [PMID: 22134508]
[157]
Tan, J.; Cang, S.; Ma, Y.; Petrillo, R.L.; Liu, D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J. Hematol. Oncol., 2010, 3, 5.
[http://dx.doi.org/10.1186/1756-8722-3-5] [PMID: 20132536]
[158]
Rosato, R.R.; Almenara, J.A.; Grant, S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res., 2003, 63(13), 3637-3645.
[PMID: 12839953]
[159]
Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Liu, J.; Lu, A.H.; Zhou, N.Z.; Robert, M.F.; Gillespie, J.; Wang, J.J.; Ste-Croix, H.; Rahil, J.; Lefebvre, S.; Moradei, O.; Delorme, D.; Macleod, A.R.; Besterman, J.M.; Li, Z. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2008, 7(4), 759-768.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2026] [PMID: 18413790]
[160]
Garcia-Manero, G.; Assouline, S.; Cortes, J.; Estrov, Z.; Kantarjian, H.; Yang, H.; Newsome, W.M.; Miller, W.H., Jr; Rousseau, C.; Kalita, A.; Bonfils, C.; Dubay, M.; Patterson, T.A.; Li, Z.; Besterman, J.M.; Reid, G.; Laille, E.; Martell, R.E.; Minden, M. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood, 2008, 112(4), 981-989.
[http://dx.doi.org/10.1182/blood-2007-10-115873] [PMID: 18495956]
[161]
Blum, K.A.; Advani, A.; Fernandez, L.; Van Der Jagt, R.; Brandwein, J.; Kambhampati, S.; Kassis, J.; Davis, M.; Bonfils, C.; Dubay, M.; Dumouchel, J.; Drouin, M.; Lucas, D.M.; Martell, R.E.; Byrd, J.C. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br. J. Haematol., 2009, 147(4), 507-514.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07881.x] [PMID: 19747365]
[162]
Younes, A.; Oki, Y.; Bociek, R.G.; Kuruvilla, J.; Fanale, M.; Neelapu, S.; Copeland, A.; Buglio, D.; Galal, A.; Besterman, J.; Li, Z.; Drouin, M.; Patterson, T.; Ward, M.R.; Paulus, J.K.; Ji, Y.; Medeiros, L.J.; Martell, R.E. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol., 2011, 12(13), 1222-1228.
[http://dx.doi.org/10.1016/S1470-2045(11)70265-0] [PMID: 22033282]
[163]
Prakash, S.; Foster, B.J.; Meyer, M. Wozniak, A.; Heilbrun, L.K.; Flaherty, L.; Zalupski M.; Radulovic, L.; Valdivieso, M-; LoRusso, P.M. Chronic oral ad- ministration of CI-994: a phase I study. Invest. New Drugs, 2001, 19, 1-11.
[http://dx.doi.org/10.1023/A:1006489328324] [PMID: 11291827]
[164]
Minami, J.; Suzuki, R.; Mazitschek, R.; Gorgun, G.; Ghosh, B.; Cirstea, D.; Hu, Y.; Mimura, N.; Ohguchi, H.; Cottini, F.; Jakubikova, J.; Munshi, N.C.; Haggarty, S.J.; Richardson, P.G.; Hideshima, T.; Anderson, K.C. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia, 2014, 28(3), 680-689.
[http://dx.doi.org/10.1038/leu.2013.231] [PMID: 23913134]
[165]
Mori, H.; Urano, Y.; Abe, F.; Furukawa, S.; Furukawa, S.; Tsurumi, Y.; Sakamoto, K.; Hashimoto, M.; Takase, S.; Hino, M.; Fujii, T. FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo), 2003, 56(2), 72-79.
[http://dx.doi.org/10.7164/antibiotics.56.72] [PMID: 12715864]
[166]
Sasamura, S.; Sakamoto, K.; Takagaki, S.; Yamada, T.; Takase, S.; Mori, H.; Fujii, T.; Hino, M.; Hashimoto, M. AS1387392, a novel immunosuppressive cyclic tetrapeptide compound with inhibitory activity against mammalian histone deacetylase. J. Antibiot. (Tokyo), 2010, 63(11), 633-636.
[http://dx.doi.org/10.1038/ja.2010.51] [PMID: 20588300]
[167]
Gomez-Paloma, L.; Bruno, I.; Cini, E.; Khochbin, S.; Rodriquez, M.; Taddei, M.; Terracciano, S.; Sadoul, K. Design and synthesis of cyclopeptide analogues of the potent histone deacetylase inhibitor FR235222. ChemMedChem, 2007, 2(10), 1511-1519.
[http://dx.doi.org/10.1002/cmdc.200700095] [PMID: 17694590]
[168]
Su, J.M.; Li, X.N.; Thompson, P.; Ou, C.N.; Ingle, A.M.; Russell, H.; Lau, C.C.; Adamson, P.C.; Blaney, S.M. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin. Cancer Res., 2011, 17(3), 589-597.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0738] [PMID: 21115653]
[169]
Mohammed, T.A.; Holen, K.D.; Jaskula-Sztul, R.; Mulkerin, D.; Lubner, S.J.; Schelman, W.R.; Eickhoff, J.; Chen, H.; Loconte, N.K. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist, 2011, 16(6), 835-843.
[http://dx.doi.org/10.1634/theoncologist.2011-0031] [PMID: 21632454]
[170]
Wheler, J.J.; Janku, F.; Falchook, G.S.; Jackson, T.L.; Fu, S.; Naing, A.; Tsimberidou, A.M.; Moulder, S.L.; Hong, D.S.; Yang, H.; Piha-Paul, S.A.; Atkins, J.T.; Garcia-Manero, G.; Kurzrock, R. Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacetylase inhibitor valproic acid in patients with advanced cancers. Cancer Chemother. Pharmacol., 2014, 73(3), 495-501.
[http://dx.doi.org/10.1007/s00280-014-2384-1] [PMID: 24435060]
[171]
Iwahashi, S.; Utsunomiya, T.; Imura, S.; Morine, Y.; Ikemoto, T.; Arakawa, Y.; Saito, Y.; Ishikawa, D.; Shimada, M. Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II. Anticancer Res., 2014, 34(9), 5187-5191.
[PMID: 25202113]
[172]
Lee, J.E.; Kim, J.H. Valproic acid inhibits the invasion of PC3 prostate cancer cells by upregulating the metastasis suppressor protein NDRG1. Genet. Mol. Biol., 2015, 38(4), 527-533.
[http://dx.doi.org/10.1590/S1415-475738420150028] [PMID: 26692161]
[173]
Petrelli, R.; Meli, M.; Vita, P.; Torquati, I.; Ferro, A.; Vodnala, M.; D’Alessandro, N.; Tolomeo, M.; Del Bello, F.; Kusumanchi, P.; Franchetti, P.; Grifantini, M.; Jayaram, H.N.; Hofer, A.; Cappellacci, L. From the covalent linkage of drugs to novel inhibitors of ribonucleotide reductase: synthesis and biological evaluation of valproic esters of 3′-C-methyladenosine. Bioorg. Med. Chem. Lett., 2014, 24(22), 5304-5309.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.046] [PMID: 25304896]
[174]
Iannitti, T.; Palmieri, B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R D., 2011, 11(3), 227-249.
[http://dx.doi.org/10.2165/11591280-000000000-00000] [PMID: 21902286]
[175]
Merzvinskyte, R.; Treigyte, G.; Savickiene, J.; Magnusson, K.E.; Navakauskiene, R. Effects of histone deacetylase inhibitors, sodium phenyl butyrate and vitamin B3, in combination with retinoic acid on granulocytic differentiation of human promyelocytic leukemia HL-60 cells. Ann. N. Y. Acad. Sci., 2006, 1091, 356-367.
[http://dx.doi.org/10.1196/annals.1378.080] [PMID: 17341628]
[176]
Carducci, M.A.; Gilbert, J.; Bowling, M.K.; Noe, D.; Eisenberger, M.A.; Sinibaldi, V.; Zabelina, Y.; Chen, T.L.; Grochow, L.B.; Donehower, R.C. A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res., 2001, 7(10), 3047-3055.
[PMID: 11595694]
[177]
Witzig, T.E.; Timm, M.; Stenson, M.; Svingen, P.A.; Kaufmann, S.H. Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin. Cancer Res., 2000, 6(2), 681-692.
[PMID: 10690554]
[178]
Feinman, R.; Clarke, K.O.; Harrison, L.E. Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells. Cancer Chemother. Pharmacol., 2002, 49(1), 27-34.
[http://dx.doi.org/10.1007/s00280-001-0390-6] [PMID: 11855750]
[179]
Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem., 1990, 265(28), 17174-17179.
[PMID: 2211619]
[180]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325.
[http://dx.doi.org/10.1038/nchembio.1223] [PMID: 23524983]
[181]
You, B.R.; Park, W.H. The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid. Int. J. Oncol., 2016, 48(5), 2197-2204.
[http://dx.doi.org/10.3892/ijo.2016.3402] [PMID: 26936390]
[182]
Foss, F.; Pro, B.; Miles Prince, H.; Sokol, L.; Caballero, D.; Horwitz, S.; Coiffier, B. Responses to romidepsin by line of therapy in patients with relapsed or refractory peripheral T-cell lymphoma. Cancer Med., 2017, 6(1), 36-44.
[http://dx.doi.org/10.1002/cam4.939] [PMID: 27981793]
[183]
De Schepper, S.; Bruwiere, H.; Verhulst, T.; Steller, U.; Andries, L.; Wouters, W.; Janicot, M.; Arts, J.; Van Heusden, J. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin. J. Pharmacol. Exp. Ther., 2003, 304(2), 881-888.
[http://dx.doi.org/10.1124/jpet.102.042903] [PMID: 12538846]
[184]
Kwon, S.H.; Ahn, S.H.; Kim, Y.K.; Bae, G.U.; Yoon, J.W.; Hong, S.; Lee, H.Y.; Lee, Y.W.; Lee, H.W.; Han, J.W. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J. Biol. Chem., 2002, 277(3), 2073-2080.
[http://dx.doi.org/10.1074/jbc.M106699200] [PMID: 11698395]
[185]
Nakao, Y.; Yoshida, S.; Matsunaga, S.; Shindoh, N.; Terada, Y.; Nagai, K.; Yamashita, J.K.; Ganesan, A.; van Soest, R.W.; Fusetani, N. Azumamides A-E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew. Chem. Int. Ed. Engl., 2006, 45(45), 7553-7557.
[http://dx.doi.org/10.1002/anie.200602047] [PMID: 16981208]
[186]
Villadsen, J.S.; Stephansen, H.M.; Maolanon, A.R.; Harris, P.; Olsen, C.A. Total synthesis and full histone deacetylase inhibitory profiling of Azumamides A-E as well as β2- epi-Azumamide E and β3-epi-Azumamide E. J. Med. Chem., 2013, 56(16), 6512-6520.
[http://dx.doi.org/10.1021/jm4008449] [PMID: 23865683]
[187]
Furumai, R.; Komatsu, Y.; Nishino, N.; Khochbin, S.; Yoshida, M.; Horinouchi, S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA, 2001, 98(1), 87-92.
[http://dx.doi.org/10.1073/pnas.98.1.87] [PMID: 11134513]
[188]
Petrella, A.; D’Acunto, C.W.; Rodriquez, M.; Festa, M.; Tosco, A.; Bruno, I.; Terracciano, S.; Taddei, M.; Paloma, L.G.; Parente, L. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: role of annexin A1. Eur. J. Cancer, 2008, 44(5), 740-749.
[http://dx.doi.org/10.1016/j.ejca.2008.01.023] [PMID: 18295477]
[189]
Taori, K.; Paul, V.J.; Luesch, H. Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J. Am. Chem. Soc., 2008, 130(6), 1806-1807.
[http://dx.doi.org/10.1021/ja7110064] [PMID: 18205365]
[190]
Rehman, M.U.; Jawaid, P.; Yoshihisa, Y.; Li, P.; Zhao, Q.L.; Narita, K.; Katoh, T.; Kondo, T.; Shimizu, T. Spiruchostatin A and B, novel histone deacetylase inhibitors, induce apoptosis through reactive oxygen species-mitochondria pathway in human lymphoma U937 cells. Chem. Biol. Interact., 2014, 221, 24-34.
[http://dx.doi.org/10.1016/j.cbi.2014.07.004] [PMID: 25078973]
[191]
Weinlander, E.; Somnay, Y.; Harrison, A.D.; Wang, C.; Cheng, Y.Q.; Jaskula-Sztul, R.; Yu, X.M.; Chen, H. The novel histone deacetylase inhibitor thailandepsin A inhibits anaplastic thyroid cancer growth. J. Surg. Res., 2014, 190(1), 191-197.
[http://dx.doi.org/10.1016/j.jss.2014.02.042] [PMID: 24679699]
[192]
Bernardi, E.; Fauchere, J-L.; Atassi, G.; Viallefont, P.; Lazaro, R. Antitumoral cyclic peptide analogues of chlamydocin. Peptides, 1993, 14(6), 1091-1093.
[http://dx.doi.org/10.1016/0196-9781(93)90160-I] [PMID: 8134289]
[193]
Reddy, D.N.; Ballante, F.; Chuang, T.; Pirolli, A.; Marrocco, B.; Marshall, G.R. Design and synthesis of simplified Largazole analogues as isoform-selective human lysine deacetylase inhibitors. J. Med. Chem., 2016, 59(4), 1613-1633.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01632] [PMID: 26681404]
[194]
Fennell, K.A.; Miller, M.J. Syntheses of amamistatin fragments and determination of their HDAC and antitumor activity. Org. Lett., 2007, 9(9), 1683-1685.
[http://dx.doi.org/10.1021/ol070382e] [PMID: 17397173]
[195]
Venturelli, S.; Berger, A.; Böcker, A.; Busch, C.; Weiland, T.; Noor, S.; Leischner, C.; Schleicher, S.; Mayer, M.; Weiss, T.S.; Bischoff, S.C.; Lauer, U.M.; Bitzer, M. Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One, 2013, 8(8), e73097
[http://dx.doi.org/10.1371/journal.pone.0073097] [PMID: 24023672]
[196]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[197]
Tortorella, S.M.; Royce, S.G.; Licciardi, P.V.; Karagiannis, T.C.; Paul, V.; Licciardi, P.V.; Karagian, C. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid. Redox Signal., 2015, 22(16), 1382-1424.
[http://dx.doi.org/10.1089/ars.2014.6097] [PMID: 25364882]
[198]
Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63(18), 5821-5828.
[PMID: 14522905]
[199]
Lorico, A.; Rappa, G. Phenotypic heterogeneity of breast cancer stem cells. J. Oncol., 2011, 2011, 135039
[http://dx.doi.org/10.1155/2011/135039] [PMID: 21317983]
[200]
Zhou, B.B.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov., 2009, 8(10), 806-823.
[http://dx.doi.org/10.1038/nrd2137] [PMID: 19794444]
[201]
Li, Y.; Zhang, T. Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol., 2013, 9(8), 1097-1103.
[http://dx.doi.org/10.2217/fon.13.108] [PMID: 23902242]
[202]
Shahabipour, F.; Caraglia, M.; Majeed, M.; Derosa, G.; Maffioli, P.; Sahebkar, A. Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett., 2017, 400, 325-335.
[http://dx.doi.org/10.1016/j.canlet.2017.03.020] [PMID: 28323035]
[203]
Saud, S.M.; Li, W.; Gray, Z.; Matter, M.S.; Colburn, N.H.; Young, M.R.; Kim, Y.S. Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β. Cancer Prev. Res. (Phila.), 2016, 9(7), 607-615.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0044] [PMID: 27138790]
[204]
Yang, J.S.; Kok, L.F.; Lin, Y.H.; Kuo, T-C.; Yang, J-L.; Lin, C-C.; Chen, G-W.; Huang, W-W.; Ho, H-C.; Chung, J-G. Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo. Anticancer Res., 2006, 26(1A), 219-225.
[PMID: 16475702]
[205]
Huang, Z.; Lei, X.; Zhong, M.; Zhu, B.; Tang, S.; Liao, D. Bcl-2 small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma A549/DDP cell to cisplatin and diallyl disulfide. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(11), 835-843.
[http://dx.doi.org/10.1111/j.1745-7270.2007.00356.x] [PMID: 17989874]
[206]
Jo, H.J.; Song, J.D.; Kim, K.M.; Cho, Y.H.; Kim, K.H.; Park, Y.C. Diallyl disulfide induces reversible G2/M phase arrest on a p53-independent mechanism in human colon cancer HCT-116 cells. Oncol. Rep., 2008, 19(1), 275-280.
[http://dx.doi.org/10.3892/or.19.1.275] [PMID: 18097607]
[207]
Altonsy, M.O.; Habib, T.N.; Andrews, S.C. Diallyl disulfide-induced apoptosis in a breast-cancer cell line (MCF-7) may be caused by inhibition of histone deacetylation. Nutr. Cancer, 2012, 64(8), 1251-1260.
[http://dx.doi.org/10.1080/01635581.2012.721156] [PMID: 23163853]
[208]
Frey, R.R.; Wada, C.K.; Garland, R.B.; Curtin, M.L.; Michaelides, M.R.; Li, J.; Pease, L.J.; Glaser, K.B.; Marcotte, P.A.; Bouska, J.J.; Murphy, S.S.; Davidsen, S.K. Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett., 2002, 12(23), 3443-3447.
[http://dx.doi.org/10.1016/S0960-894X(02)00754-0] [PMID: 12419380]
[209]
Jose, B.; Oniki, Y.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Novel histone deacetylase inhibitors: cyclic tetrapeptide with trifluoromethyl and pentafluoroethyl ketones. Bioorg. Med. Chem. Lett., 2004, 14(21), 5343-5346.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.016] [PMID: 15454224]
[210]
Madsen, A.S.; Kristensen, H.M.; Lanz, G.; Olsen, C.A. The effect of various zinc binding groups on inhibition of histone deacetylases 1-11. ChemMedChem, 2014, 9(3), 614-626.
[http://dx.doi.org/10.1002/cmdc.201300433] [PMID: 24375963]
[211]
Ideo, A.; Sasaki, M.; Nakamura, C.; Mori, K.; Shimada, J.; Kanda, Y.; Kunii, S.; Kawase, M.; Sakagami, H. Cytotoxic activity of selected trifluoromethyl ketones against oral tumor cells. Anticancer Res., 2006, 26(6B), 4335-4341.
[PMID: 17201152]
[212]
Salvador, L.A.; Luesch, H. Discovery and mechanism of natural products as modulators of histone acetylation. Curr. Drug Targets, 2012, 13(8), 1029-1047.
[http://dx.doi.org/10.2174/138945012802008973] [PMID: 22594471]
[213]
Kwon, H.J.; Owa, T.; Hassig, C.A.; Shimada, J.; Schreiber, S.L. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3356-3361.
[http://dx.doi.org/10.1073/pnas.95.7.3356] [PMID: 9520369]
[214]
Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem., 1993, 268(30), 22429-22435.
[PMID: 8226751]
[215]
Du, L.; Risinger, A.L.; King, J.B.; Powell, D.R.; Cichewicz, R.H. A potent HDAC inhibitor, 1-alaninechlamydocin, from a Tolypocladium sp. induces G2/M cell cycle arrest and apoptosis in MIA PaCa-2 cells. J. Nat. Prod., 2014, 77(7), 1753-1757.
[http://dx.doi.org/10.1021/np500387h] [PMID: 24999749]
[216]
Hong, J.; Luesch, H. Largazole: from discovery to broad-spectrum therapy. Nat. Prod. Rep., 2012, 29(4), 449-456.
[http://dx.doi.org/10.1039/c2np00066k] [PMID: 22334030]
[217]
Salvador, L.A.; Park, H.; Al-Awadhi, F.H.; Liu, Y.; Kim, B.; Zeller, S.L.; Chen, Q.Y.; Hong, J.; Luesch, H. Modulation of activity profiles for largazole-based HDAC inhibitors through alteration of prodrug properties. ACS Med. Chem. Lett., 2014, 5(8), 905-910.
[http://dx.doi.org/10.1021/ml500170r] [PMID: 25147612]
[218]
Hassig, C.A.; Symons, K.T.; Guo, X.; Nguyen, P.M.; Annable, T.; Wash, P.L.; Payne, J.E.; Jenkins, D.A.; Bonnefous, C.; Trotter, C.; Wang, Y.; Anzola, J.V.; Milkova, E.L.; Hoffman, T.Z.; Dozier, S.J.; Wiley, B.M.; Saven, A.; Malecha, J.W.; Davis, R.L.; Muhammad, J.; Shiau, A.K.; Noble, S.A.; Rao, T.S.; Smith, N.D.; Hager, J.H. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2008, 7(5), 1054-1065.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2347] [PMID: 18483295]
[219]
Payne, J.E.; Bonnefous, C.; Hassig, C.A.; Symons, K.T.; Guo, X.; Nguyen, P.M.; Annable, T.; Wash, P.L.; Hoffman, T.Z.; Rao, T.S.; Shiau, A.K.; Malecha, J.W.; Noble, S.A.; Hager, J.H.; Smith, N.D. Identification of KD5170: a novel mercaptoketone-based histone deacetylase inhibitor. Bioorg. Med. Chem. Lett., 2008, 18(23), 6093-6096.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.029] [PMID: 18954983]
[220]
Baud, M.G.; Leiser, T.; Petrucci, V.; Gunaratnam, M.; Neidle, S.; Meyer-Almes, F.J.; Fuchter, M.J. Thioester derivatives of the natural product psammaplin A as potent histone deacetylase inhibitors. Beilstein J. Org. Chem., 2013, 9, 81-88.
[http://dx.doi.org/10.3762/bjoc.9.11] [PMID: 23400330]
[221]
Miller, T.A.; Witter, D.J.; Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem., 2003, 46(24), 5097-5116.
[http://dx.doi.org/10.1021/jm0303094] [PMID: 14613312]
[222]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721.
[http://dx.doi.org/10.1080/14756366.2017.1417274] [PMID: 29616828]
[223]
Bressi, J.C.; Jennings, A.J.; Skene, R.; Wu, Y.; Melkus, R.; De Jong, R.; O’Connell, S.; Grimshaw, C.E.; Navre, M.; Gangloff, A.R. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett., 2010, 20(10), 3142-3145.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.091] [PMID: 20392638]
[224]
Lauffer, B.E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Structure of Human HDAC2 in complex with SAHA (vorinostat). J. Biol. Chem., 2013, 288, 26926-26943.
[http://dx.doi.org/10.1074/jbc.M113.490706] [PMID: 23897821]
[225]
Haji Agha Bozorgi, A.; Zarghi, A. Search for the pharmacophore of histone deacetylase inhibitors using pharmacophore query and docking study. Iran. J. Pharm. Res., 2014, 13(4), 1165-1172.
[PMID: 25587304]
[226]
Itoh, Y.; Suzuki, T.; Miyata, N. Isoform-selective histone deacetylase inhibitors. Curr. Pharm. Des., 2008, 14(6), 529-544.
[http://dx.doi.org/10.2174/138161208783885335] [PMID: 18336298]
[227]
Suzuki, T. Explorative study on isoform-selective histone deacetylase inhibitors. Chem. Pharm. Bull. (Tokyo), 2009, 57(9), 897-906.
[http://dx.doi.org/10.1248/cpb.57.897] [PMID: 19721249]
[228]
Thaler, F.; Mercurio, C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem, 2014, 9(3), 523-526.
[http://dx.doi.org/10.1002/cmdc.201300413] [PMID: 24730063]
[229]
Weïwer, M.; Lewis, M.C.; Wagner, F.F.; Holson, E.B. Therapeutic potential of isoform selective HDAC inhibitors for the treatment of schizophrenia. Future Med. Chem., 2013, 5(13), 1491-1508.
[http://dx.doi.org/10.4155/fmc.13.141] [PMID: 24024943]
[230]
Ganai, S.A. Novel approaches towards designing of isoform-selective inhibitors against class II histone deacetylases: The acute requirement for targeted anticancer therapy. Curr. Top. Med. Chem., 2016, 16(22), 2441-2452.
[http://dx.doi.org/10.2174/1568026616666160212122609] [PMID: 26873193]
[231]
Ganai, S.A. Designing isoform-selective inhibitors against classical HDACs for effective anticancer therapy: Insight and perspectives from in silico. Curr. Drug Targets, 2018, 19(7), 815-824.
[http://dx.doi.org/10.2174/1389450118666170112130151] [PMID: 28078985]
[232]
Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J., 2008, 409(2), 581-589.
[http://dx.doi.org/10.1042/BJ20070779] [PMID: 17868033]
[233]
Ma, N.; Luo, Y.; Wang, Y.; Liao, C.; Ye, W.C.; Jiang, S. Selective histone deacetylase inhibitors with anticancer activity. Curr. Top. Med. Chem., 2016, 16(4), 415-426.
[http://dx.doi.org/10.2174/1568026615666150813145629] [PMID: 26268343]
[234]
Bieliauskas, A.V.; Pflum, M.K. Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev., 2008, 37(7), 1402-1413.
[http://dx.doi.org/10.1039/b703830p] [PMID: 18568166]
[235]
Balasubramanian, S.; Verner, E.; Buggy, J.J. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett., 2009, 280(2), 211-221.
[http://dx.doi.org/10.1016/j.canlet.2009.02.013] [PMID: 19289255]
[236]
Zhan, P.; Itoh, Y.; Suzuki, T.; Liu, X. Strategies for the discovery of target-specific or isoform-selective modulators. J. Med. Chem., 2015, 58(19), 7611-7633.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00229] [PMID: 26086931]
[237]
Day, J.A.; Cohen, S.M. Investigating the selectivity of metalloenzyme inhibitors. J. Med. Chem., 2013, 56(20), 7997-8007.
[http://dx.doi.org/10.1021/jm401053m] [PMID: 24074025]
[238]
Chen, Y.; Cohen, S.M. Investigating the selectivity of metalloenzyme inhibitors in the presence of competing metalloproteins. ChemMedChem, 2015, 10(10), 1733-1738.
[http://dx.doi.org/10.1002/cmdc.201500293] [PMID: 26412596]
[239]
Wagner, F.F.; Olson, D.E.; Gale, J.P.; Kaya, T.; Weïwer, M.; Aidoud, N.; Thomas, M.; Davoine, E.L.; Lemercier, B.C.; Zhang, Y-L.; Holson, E.B. Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif. J. Med. Chem., 2013, 56(4), 1772-1776.
[http://dx.doi.org/10.1021/jm301355j] [PMID: 23368884]
[240]
Blackburn, C.; Barrett, C.; Chin, J.; Garcia, K.; Gigstad, K.; Gould, A.; Gutierrez, J.; Harrison, S.; Hoar, K.; Lynch, C.; Rowland, R.S.; Tsu, C.; Ringeling, J.; Xu, H. Potent histone deacetylase inhibitors derived from 4-(aminomethyl)-N-hydroxybenzamide with high selectivity for the HDAC6 isoform. J. Med. Chem., 2013, 56(18), 7201-7211.
[http://dx.doi.org/10.1021/jm400385r] [PMID: 23964961]
[241]
Olson, D.E.; Wagner, F.F.; Kaya, T.; Gale, J.P.; Aidoud, N.; Davoine, E.L.; Lazzaro, F.; Weïwer, M.; Zhang, Y-L.; Holson, E.B. Discovery of the first histone deacetylase 6/8 dual inhibitors. J. Med. Chem., 2013, 56(11), 4816-4820.
[http://dx.doi.org/10.1021/jm400390r] [PMID: 23672185]
[242]
Marek, L.; Hamacher, A.; Hansen, F.K.; Kuna, K.; Gohlke, H.; Kassack, M.U.; Kurz, T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem., 2013, 56(2), 427-436.
[http://dx.doi.org/10.1021/jm301254q] [PMID: 23252603]
[243]
Luckhurst, C.A.; Breccia, P.; Stott, A.J.; Aziz, O.; Birch, H.L.; Bürli, R.W.; Hughes, S.J.; Jarvis, R.E.; Lamers, M.; Leonard, P.M.; Matthews, K.L.; McAllister, G.; Pollack, S.; Saville-Stones, E.; Wishart, G.; Yates, D.; Dominguez, C. Potent, selective, and CNS-penetrant tetrasubstituted cyclopropane class IIa histone deacetylase (HDAC) inhibitors. ACS Med. Chem. Lett., 2015, 7(1), 34-39.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00302] [PMID: 26819662]
[244]
Bürli, R.W.; Luckhurst, C.A.; Aziz, O.; Matthews, K.L.; Yates, D.; Lyons, K.A.; Beconi, M.; McAllister, G.; Breccia, P.; Stott, A.J.; Penrose, S.D.; Wall, M.; Lamers, M.; Leonard, P.; Müller, I.; Richardson, C.M.; Jarvis, R.; Stones, L.; Hughes, S.; Wishart, G.; Haughan, A.F.; O’Connell, C.; Mead, T.; McNeil, H.; Vann, J.; Mangette, J.; Maillard, M.; Beaumont, V.; Munoz-Sanjuan, I.; Dominguez, C. Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J. Med. Chem., 2013, 56(24), 9934-9954.
[http://dx.doi.org/10.1021/jm4011884] [PMID: 24261862]
[245]
Zhang, J.; Zhong, Q. Histone deacetylase inhibitors and cell death. Cell. Mol. Life Sci., 2014, 71(20), 3885-3901.
[http://dx.doi.org/10.1007/s00018-014-1656-6] [PMID: 24898083]
[246]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[247]
Chen, L.; Petrelli, R.; Gao, G.; Wilson, D.J.; McLean, G.T.; Jayaram, H.N.; Sham, Y.Y.; Pankiewicz, K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure. Bioorg. Med. Chem., 2010, 18(16), 5950-5964.
[http://dx.doi.org/10.1016/j.bmc.2010.06.081] [PMID: 20650640]
[248]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 2002, 108(2), 153-164.
[http://dx.doi.org/10.1016/S0092-8674(02)00625-6] [PMID: 11832206]
[249]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[250]
Blagosklonny, M.V.; Robey, R.; Sackett, D.L.; Du, L.; Traganos, F.; Darzynkiewicz, Z.; Fojo, T.; Bates, S.E. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol. Cancer Ther., 2002, 1(11), 937-941.
[PMID: 12481415]
[251]
Zhang, Z.; Hao, C.; Wang, L.; Liu, P.; Zhao, L.; Zhu, C.; Tian, X. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors. OncoTargets Ther., 2013, 6, 733-740.
[PMID: 23836985]
[252]
Zhang, X.D.; Gillespie, S.K.; Borrow, J.M.; Hersey, P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol. Cancer Ther., 2004, 3(4), 425-435.
[PMID: 15078986]
[253]
Silva, G.; Cardoso, B.A.; Belo, H.; Almeida, A.M. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms. PLoS One, 2013, 8(1), e53766
[http://dx.doi.org/10.1371/journal.pone.0053766] [PMID: 23320102]
[254]
Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J.E.; Lee, S.W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443.
[http://dx.doi.org/10.1038/86507] [PMID: 11283670]
[255]
Qian, D.Z.; Kachhap, S.K.; Collis, S.J.; Verheul, H.M.; Carducci, M.A.; Atadja, P.; Pili, R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 α. Cancer Res., 2006, 66(17), 8814-8821.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4598] [PMID: 16951198]
[256]
Lee, J.H.; Choy, M.L.; Ngo, L.; Foster, S.S.; Marks, P.A. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14639-14644.
[http://dx.doi.org/10.1073/pnas.1008522107] [PMID: 20679231]
[257]
Rosato, R.R.; Grant, S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin. Ther. Targets, 2005, 9(4), 809-824.
[http://dx.doi.org/10.1517/14728222.9.4.809] [PMID: 16083344]
[258]
Marks, P.A. Thioredoxin in cancer--role of histone deacetylase inhibitors. Semin. Cancer Biol., 2006, 16(6), 436-443.
[http://dx.doi.org/10.1016/j.semcancer.2006.09.005] [PMID: 17095247]
[259]
Munshi, A.; Kurland, J.F.; Nishikawa, T.; Tanaka, T.; Hobbs, M.L.; Tucker, S.L.; Ismail, S.; Stevens, C.; Meyn, R.E. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res., 2005, 11(13), 4912-4922.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2088] [PMID: 16000590]
[260]
Chen, C.S.; Wang, Y.C.; Yang, H.C.; Huang, P.H.; Kulp, S.K.; Yang, C.C.; Lu, Y.S.; Matsuyama, S.; Chen, C.Y.; Chen, C.S. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res., 2007, 67(11), 5318-5327.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3996] [PMID: 17545612]
[261]
Adimoolam, S.; Sirisawad, M.; Chen, J.; Thiemann, P.; Ford, J.M.; Buggy, J.J. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19482-19487.
[http://dx.doi.org/10.1073/pnas.0707828104] [PMID: 18042714]
[262]
Yang, J.S.; Chun, T-G.; Nam, K-Y.; Kim, H.M.; Han, G. Structure-activity relationship of novel lactam based histone deacetylase inhibitors as potential anticancer drugs. Bull. Korean Chem. Soc., 2012, 33, 2063-2066.
[http://dx.doi.org/10.5012/bkcs.2012.33.6.2063]
[263]
Choi, E.; Lee, C.; Park, J.E.; Seo, J.J.; Cho, M.; Kang, J.S.; Kim, H.M.; Park, S.K.; Lee, K.; Han, G. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(4), 1218-1221.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.079] [PMID: 21256006]
[264]
Lee, C.; Choi, E.; Cho, M.; Lee, B.; Oh, S.J.; Park, S.K.; Lee, K.; Kim, H.M.; Han, G. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors: part II. Bioorg. Med. Chem. Lett., 2012, 22(12), 4189-4192.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.045] [PMID: 22578459]
[265]
Pontiki, E.; Hadjipavlou-Litina, D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med. Res. Rev., 2012, 32(1), 1-165.
[http://dx.doi.org/10.1002/med.20200] [PMID: 20162725]
[266]
Sodji, Q.H.; Patil, V.; Kornacki, J.R.; Mrksich, M.; Oyelere, A.K. Synthesis and structure-activity relationship of 3-hydroxypyridine-2-thione-based histone deacetylase inhibitors. J. Med. Chem., 2013, 56(24), 9969-9981.
[http://dx.doi.org/10.1021/jm401225q] [PMID: 24304348]
[267]
Chen, P.C.; Patil, V.; Guerrant, W.; Green, P.; Oyelere, A.K. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group. Bioorg. Med. Chem., 2008, 16(9), 4839-4853.
[http://dx.doi.org/10.1016/j.bmc.2008.03.050] [PMID: 18397827]
[268]
Di Micco, S.; Terracciano, S.; Bruno, I.; Rodriquez, M.; Riccio, R.; Taddei, M.; Bifulco, G. Molecular modeling studies toward the structural optimization of new cyclopeptide-based HDAC inhibitors modeled on the natural product FR235222. Bioorg. Med. Chem., 2008, 16(18), 8635-8642.
[http://dx.doi.org/10.1016/j.bmc.2008.08.003] [PMID: 18715788]
[269]
Wang, S.; Li, X.; Wei, Y.; Xiu, Z.; Nishino, N. Discovery of potent HDAC inhibitors based on chlamydocin with inhibitory effects on cell migration. ChemMedChem, 2014, 9(3), 627-637.
[http://dx.doi.org/10.1002/cmdc.201300372] [PMID: 24285590]
[270]
Neelarapu, R.; Holzle, D.L.; Velaparthi, S.; Bai, H.; Brunsteiner, M.; Blond, S.Y.; Petukhov, P.A. Design, synthesis, docking, and biological evaluation of novel diazide-containing isoxazole- and pyrazole-based histone deacetylase probes. J. Med. Chem., 2011, 54(13), 4350-4364.
[http://dx.doi.org/10.1021/jm2001025] [PMID: 21548582]
[271]
Patel, P.; Singh, A.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Rajak, H. Pharmacophore Based 3D-QSAR, Virtual Screening and docking studies on novel series of HDAC Inhibitors with thiophen linker as anticancer agents. Comb. Chem. High Throughput Screen., 2016, 19(9), 735-751.
[http://dx.doi.org/10.2174/1386207319666160801154415] [PMID: 27487787]
[272]
Kandakatla, N.; Ramakrishnan, G. Molecular docking studies of designed benzamide derivatives as histone deacetylase 2 inhibitors. Int. J. Pharm. Pharm. Sci., 2014, 6, 324-328.
[273]
Thangapandian, S.; John, S.; Lee, K.W. Molecular dynamics simulation study explaining inhibitor selectivity in different class of histone deacetylases. J. Biomol. Struct. Dyn., 2012, 29(4), 677-698.
[http://dx.doi.org/10.1080/07391102.2012.10507409] [PMID: 22208272]
[274]
Thangapandian, S.; John, S.; Lee, Y.; Arulalapperumal, V.; Lee, K.W. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms. PLoS One, 2012, 7(11), e49327
[http://dx.doi.org/10.1371/journal.pone.0049327] [PMID: 23209570]
[275]
Bermúdez-Lugo, J.A.; Perez-Gonzalez, O.; Rosales-Hernández, M.C.; Ilizaliturri-Flores, I.; Trujillo-Ferrara, J.; Correa-Basurto, J. Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. J. Mol. Model., 2012, 18(6), 2301-2310.
[http://dx.doi.org/10.1007/s00894-011-1240-z] [PMID: 21968575]
[276]
Estiu, G.; West, N.; Mazitschek, R.; Greenberg, E.; Bradner, J.E.; Wiest, O. On the inhibition of histone deacetylase 8. Bioorg. Med. Chem., 2010, 18(11), 4103-4110.
[http://dx.doi.org/10.1016/j.bmc.2010.03.080] [PMID: 20472442]
[277]
Kalyaanamoorthy, S.; Chen, Y.P. Ligand release mechanisms and channels in histone deacetylases. J. Comput. Chem., 2013, 34(26), 2270-2283.
[http://dx.doi.org/10.1002/jcc.23390] [PMID: 23893931]
[278]
Lu, H.; Chen, Y-D.; Yang, B.; You, Q-D. Design, synthesis and biological evaluation of novel histone deacetylase inhibitors based on virtual screening. Acta Pharm. Sin. B, 2011, 1, 240-247.
[http://dx.doi.org/10.1016/j.apsb.2011.10.002]
[279]
Schlimme, S.; Hauser, A.T.; Carafa, V.; Heinke, R.R.; Kannan, S.; Stolfa, D.A.; Cellamare, S.; Carotti, A.; Altucci, L.; Jung, M.; Sippl, W. Carbamate prodrug concept for hydroxamate HDAC inhibitors. ChemMedChem, 2011, 6, 1193-1198.
[http://dx.doi.org/10.1002/cmdc.201100007] [PMID: 21416613]
[280]
Zhang, L.; Li, M.; Feng, J.; Fang, H.; Xu, W. Discovery of a novel histone deacetylase 8 inhibitor by virtual screening. Med. Chem. Res., 2012, 21, 152-156.
[http://dx.doi.org/10.1007/s00044-010-9519-7]
[281]
Park, H.; Kim, S.; Kim, Y.E.; Lim, S.J. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups. ChemMedChem, 2010, 5(4), 591-597.
[http://dx.doi.org/10.1002/cmdc.200900500] [PMID: 20157916]
[282]
Tatar, B.; Tokluman, T.D.; Yelekci, K.; Yurter, H. Power of inhibition activity screening and 3D molecular modeling approaches in HDAC 8 inhibitor design. Turk. J. Chem., 2011, 35, 861-870.
[283]
Marek, M.; Kannan, S.; Hauser, A.T.; Moraes Mourao, M.; Caby, S.; Cura, V.; Stolfa, D.A.; Schmidtkunz, K.; Lancelot, J.; Andrade, L.; Renaud, J.P.; Oliveira, G.; Sippl, W.; Jung, M.; Cavarelli, J.; Pierce, R.J.; Romier, C. Structural basis for the player in the blood fluke schistosoma mansoni. PLoS Pathog., 2013, 9e, 1003645
[http://dx.doi.org/10.1371/journal.ppat.1003645] [PMID: 24086136]
[284]
Zheng, S.; Zhong, Q.; Jiang, Q.; Mottamal, M.; Zhang, Q.; Zhu, N.; Burow, M.E.; Worthylake, R.A.; Wang, G. Discovery of a series of thiazole derivatives as novel inhibitors of metastatic cancer cell migration and invasion. ACS Med. Chem. Lett., 2013, 4(2), 191-196.
[http://dx.doi.org/10.1021/ml300322n] [PMID: 23526571]
[285]
Zheng, S.; Zhong, Q.; Xi, Y.; Mottamal, M.; Zhang, Q.; Schroeder, R.L.; Sridhar, J.; He, L.; McFerrin, H.; Wang, G. Modification and biological evaluation of thiazole derivatives as novel inhibitors of metastatic cancer cell migration and invasion. J. Med. Chem., 2014, 57(15), 6653-6667.
[http://dx.doi.org/10.1021/jm500724x] [PMID: 25007006]
[286]
Kalyaanamoorthy, S.; Chen, Y.P. Energy based pharmacophore mapping of HDAC inhibitors against class I HDAC enzymes. Biochim. Biophys. Acta, 2013, 1834(1), 317-328.
[http://dx.doi.org/10.1016/j.bbapap.2012.08.009] [PMID: 23457710]
[287]
Ganai, S.A.; Shanmugam, K.; Mahadevan, V. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms. J. Biomol. Struct. Dyn., 2015, 33(2), 374-387.
[http://dx.doi.org/10.1080/07391102.2013.879073] [PMID: 24460542]
[288]
Thangapandian, S.; John, S.; Sakkiah, S.; Lee, K.W. Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery. J. Mol. Graph. Model., 2010, 29(3), 382-395.
[http://dx.doi.org/10.1016/j.jmgm.2010.07.007] [PMID: 20870437]
[289]
Siegel, D.; Hussein, M.; Belani, C.; Robert, F.; Galanis, E.; Richon, V.M.; Garcia-Vargas, J.; Sanz-Rodriguez, C.; Rizvi, S. Vorinostat in solid and hematologic malignancies. J. Hematol. Oncol., 2009, 2, 31.
[http://dx.doi.org/10.1186/1756-8722-2-31] [PMID: 19635146]
[290]
Munster, P.N.; Marchion, D.; Thomas, S.; Egorin, M.; Minton, S.; Springett, G.; Lee, J-H.; Simon, G.; Chiappori, A.; Sullivan, D.; Daud, A. Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br. J. Cancer, 2009, 101(7), 1044-1050.
[http://dx.doi.org/10.1038/sj.bjc.6605293] [PMID: 19738609]
[291]
Münster, P.; Marchion, D.; Bicaku, E.; Schmitt, M.; Lee, J.H.; DeConti, R.; Simon, G.; Fishman, M.; Minton, S.; Garrett, C.; Chiappori, A.; Lush, R.; Sullivan, D.; Daud, A. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J. Clin. Oncol., 2007, 25(15), 1979-1985.
[http://dx.doi.org/10.1200/JCO.2006.08.6165] [PMID: 17513804]
[292]
Marchion, D.C.; Bicaku, E.; Turner, J.G.; Schmitt, M.L.; Morelli, D.R.; Munster, P.N. HDAC2 regulates chromatin plasticity and enhances DNA vulnerability. Mol. Cancer Ther., 2009, 8(4), 794-801.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0985] [PMID: 19372552]
[293]
Baschnagel, A.; Russo, A.; Burgan, W.E.; Carter, D.; Beam, K.; Palmieri, D.; Steeg, P.S.; Tofilon, P.; Camphausen, K. Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol. Cancer Ther., 2009, 8(6), 1589-1595.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0038] [PMID: 19509253]
[294]
Groh, T.; Hrabeta, J.; Khalil, M.A.; Doktorova, H.; Eckschlager, T.; Stiborova, M. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int. J. Oncol., 2015, 47(1), 343-352.
[http://dx.doi.org/10.3892/ijo.2015.2996] [PMID: 25963435]
[295]
Luu, T.H.; Morgan, R.J.; Leong, L.; Lim, D.; McNamara, M.; Portnow, J.; Frankel, P.; Smith, D.D.; Doroshow, J.H.; Wong, C.; Aparicio, A.; Gandara, D.R.; Somlo, G. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin. Cancer Res., 2008, 14(21), 7138-7142.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0122] [PMID: 18981013]
[296]
Hodges-Gallagher, L.; Valentine, C.D.; Bader, S.E.; Kushner, P.J. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res. Treat., 2007, 105(3), 297-309.
[http://dx.doi.org/10.1007/s10549-006-9459-6] [PMID: 17186358]
[297]
Marchion, D.C.; Bicaku, E.; Daud, A.I.; Sullivan, D.M.; Munster, P.N. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res., 2005, 65(9), 3815-3822.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2478] [PMID: 15867379]
[298]
Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol., 2011, 7(2), 263-283.
[http://dx.doi.org/10.2217/fon.11.2] [PMID: 21345145]
[299]
Rathkopf, D.; Wong, B.Y.; Ross, R.W.; Anand, A.; Tanaka, E.; Woo, M.M.; Hu, J.; Dzik-Jurasz, A.; Yang, W.; Scher, H.I. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol., 2010, 66(1), 181-189.
[http://dx.doi.org/10.1007/s00280-010-1289-x] [PMID: 20217089]
[300]
Molife, L.R.; Attard, G.; Fong, P.C.; Karavasilis, V.; Reid, A.H.M.; Patterson, S.; Riggs, C.E., Jr; Higano, C.; Stadler, W.M.; McCulloch, W.; Dearnaley, D.; Parker, C.; de Bono, J.S. Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann. Oncol., 2010, 21(1), 109-113.
[http://dx.doi.org/10.1093/annonc/mdp270] [PMID: 19608618]
[301]
Pfeiffer, M.J.; Mulders, P.F.; Schalken, J.A. An in vitro model for preclinical testing of endocrine therapy combinations for prostate cancer. Prostate, 2010, 70(14), 1524-1532.
[http://dx.doi.org/10.1002/pros.21187] [PMID: 20687225]
[302]
Lassen, U.; Molife, L.R.; Sorensen, M.; Engelholm, S.A.; Vidal, L.; Sinha, R.; Penson, R.T.; Buhl-Jensen, P.; Crowley, E.; Tjornelund, J.; Knoblauch, P.; de Bono, J.S. A phase I study of the safety and pharmacokinetics of the histone deacetylase inhibitor belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours. Br. J. Cancer, 2010, 103(1), 12-17.
[http://dx.doi.org/10.1038/sj.bjc.6605726] [PMID: 20588278]
[303]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[304]
Pommier, Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev., 2009, 109(7), 2894-2902.
[http://dx.doi.org/10.1021/cr900097c] [PMID: 19476377]
[305]
Bruzzese, F.; Rocco, M.; Castelli, S.; Di Gennaro, E.; Desideri, A.; Budillon, A. Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol. Cancer Ther., 2009, 8(11), 3075-3087.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0254] [PMID: 19887547]
[306]
Sarcar, B.; Kahali, S.; Chinnaiyan, P. Vorinostat enhances the cytotoxic effects of the topoisomerase I inhibitor SN38 in glioblastoma cell lines. J. Neurooncol., 2010, 99(2), 201-207.
[http://dx.doi.org/10.1007/s11060-010-0127-7] [PMID: 20135194]
[307]
Budman, D.R.; Tai, J.; Calabro, A.; John, V. The histone deacetylase inhibitor panobinostat demonstrates marked synergy with conventional chemotherapeutic agents in human ovarian cancer cell lines. Invest. New Drugs, 2011, 29(6), 1224-1229.
[http://dx.doi.org/10.1007/s10637-010-9467-6] [PMID: 20533074]
[308]
Piacentini, P.; Donadelli, M.; Costanzo, C.; Moore, P.S.; Palmieri, M.; Scarpa, A. Trichostatin A enhances the response of chemotherapeutic agents in inhibiting pancreatic cancer cell proliferation. Virchows Arch., 2006, 448(6), 797-804.
[http://dx.doi.org/10.1007/s00428-006-0173-x] [PMID: 16568310]
[309]
Daud, A.I.; Dawson, J.; DeConti, R.C.; Bicaku, E.; Marchion, D.; Bastien, S.; Hausheer, F.A., III; Lush, R.; Neuger, A.; Sullivan, D.M.; Munster, P.N. Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin. Cancer Res., 2009, 15(7), 2479-2487.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1931] [PMID: 19318485]
[310]
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev., 2002, 16(1), 6-21.
[http://dx.doi.org/10.1101/gad.947102] [PMID: 11782440]
[311]
Kantarjian, H.; Issa, J.P.; Rosenfeld, C.S.; Bennett, J.M.; Albitar, M.; DiPersio, J.; Klimek, V.; Slack, J.; de Castro, C.; Ravandi, F.; Helmer, R., III; Shen, L.; Nimer, S.D.; Leavitt, R.; Raza, A.; Saba, H. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer, 2006, 106(8), 1794-1803.
[http://dx.doi.org/10.1002/cncr.21792] [PMID: 16532500]
[312]
Silverman, L.R.; Demakos, E.P.; Peterson, B.L.; Kornblith, A.B.; Holland, J.C.; Odchimar-Reissig, R.; Stone, R.M.; Nelson, D.; Powell, B.L.; DeCastro, C.M.; Ellerton, J.; Larson, R.A.; Schiffer, C.A.; Holland, J.F. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol., 2002, 20(10), 2429-2440.
[http://dx.doi.org/10.1200/JCO.2002.04.117] [PMID: 12011120]
[313]
Ivanoff, S.; Gruson, B.; Chantepie, S.P.; Lemasle, E.; Merlusca, L.; Harrivel, V.; Charbonnier, A.; Votte, P.; Royer, B.; Marolleau, J-P. 5-Azacytidine treatment for relapsed or refractory acute myeloid leukemia after intensive chemotherapy. Am. J. Hematol., 2013, 88(7), 601-605.
[http://dx.doi.org/10.1002/ajh.23464] [PMID: 23619977]
[314]
Griffiths, E.A.; Gore, S.D. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin. Hematol., 2008, 45(1), 23-30.
[http://dx.doi.org/10.1053/j.seminhematol.2007.11.007] [PMID: 18179966]
[315]
Cameron, E.E.; Bachman, K.E.; Myöhänen, S.; Herman, J.G.; Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet., 1999, 21(1), 103-107.
[http://dx.doi.org/10.1038/5047] [PMID: 9916800]
[316]
Segura-Pacheco, B.; Trejo-Becerril, C.; Perez-Cardenas, E.; Taja-Chayeb, L.; Mariscal, I.; Chavez, A.; Acuña, C.; Salazar, A.M.; Lizano, M.; Dueñas-Gonzalez, A. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res., 2003, 9(5), 1596-1603.
[PMID: 12738711]
[317]
Arce, C.; Pérez-Plasencia, C.; González-Fierro, A.; de la Cruz-Hernández, E.; Revilla-Vázquez, A.; Chávez-Blanco, A.; Trejo-Becerril, C.; Pérez-Cárdenas, E.; Taja-Chayeb, L.; Bargallo, E.; Villarreal, P.; Ramírez, T.; Vela, T.; Candelaria, M.; Camargo, M.F.; Robles, E.; Dueñas-González, A. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One, 2006, 1, e98
[http://dx.doi.org/10.1371/journal.pone.0000098] [PMID: 17183730]
[318]
Candelaria, M.; Gallardo-Rincón, D.; Arce, C.; Cetina, L.; Aguilar-Ponce, J.L.; Arrieta, O.; González-Fierro, A.; Chávez-Blanco, A.; de la Cruz-Hernández, E.; Camargo, M.F.; Trejo-Becerril, C.; Pérez-Cárdenas, E.; Pérez-Plasencia, C.; Taja-Chayeb, L.; Wegman-Ostrosky, T.; Revilla-Vazquez, A.; Dueñas-González, A. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol., 2007, 18(9), 1529-1538.
[http://dx.doi.org/10.1093/annonc/mdm204] [PMID: 17761710]
[319]
Kim, H.; Kwon, Y.M.; Kim, J.S.; Han, J.; Shim, Y.M.; Park, J.; Kim, D-H. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer, 2006, 107(5), 1042-1049.
[http://dx.doi.org/10.1002/cncr.22087] [PMID: 16888795]
[320]
Barros, F.F.; Powe, D.G.; Ellis, I.O.; Green, A.R. Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology, 2010, 56(5), 560-572.
[http://dx.doi.org/10.1111/j.1365-2559.2010.03494.x] [PMID: 20459566]
[321]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77(6), 400-410.
[http://dx.doi.org/10.1159/000279388] [PMID: 20130423]
[322]
Harms, K.L.; Chen, X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res., 2007, 67(7), 3145-3152.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4397] [PMID: 17409421]
[323]
Fu, M.; Rao, M.; Bouras, T.; Wang, C.; Wu, K.; Zhang, X.; Li, Z.; Yao, T-P.; Pestell, R.G. Cyclin D1 inhibits peroxisome proliferator-activated receptor γ-mediated adipogenesis through histone deacetylase recruitment. J. Biol. Chem., 2005, 280(17), 16934-16941.
[http://dx.doi.org/10.1074/jbc.M500403200] [PMID: 15713663]
[324]
Passaro, A.; Alesini, D.; Pochesci, A.; Cortesi, E. Erlotinib and gefitinib for elderly patients with advanced non-small-cell lung cancer. Anticancer. Agents Med. Chem., 2014, 14(5), 646-650.
[http://dx.doi.org/10.2174/187152061405140501101624] [PMID: 23140355]
[325]
Urata, Y.; Katakami, N.; Morita, S.; Kaji, R.; Yoshioka, H.; Seto, T.; Satouchi, M.; Iwamoto, Y.; Kanehara, M.; Fujimoto, D.; Ikeda, N.; Murakami, H.; Daga, H.; Oguri, T.; Goto, I.; Imamura, F.; Sugawara, S.; Saka, H.; Nogami, N.; Negoro, S.; Nakagawa, K.; Nakanishi, Y. Randomized phase III study comparing Gefitinib with Erlotinib in patients with previously treated advanced lung Adenocarcinoma: WJOG 5108L. J. Clin. Oncol., 2016, 34(27), 3248-3257.
[http://dx.doi.org/10.1200/JCO.2015.63.4154] [PMID: 27022112]
[326]
Subramanian, S.; Bates, S.E.; Wright, J.J.; Espinoza-Delgado, I.; Piekarz, R.L.; Piekarz, R.L. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel), 2010, 3(9), 2751-2767.
[http://dx.doi.org/10.3390/ph3092751] [PMID: 27713375]
[327]
Witta, S.E.; Dziadziuszko, R.; Yoshida, K.; Hedman, K.; Varella-Garcia, M.; Bunn, P.A., Jr; Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A., Jr; Hirsch, F.R. ErbB-3 expression is associated with E-cadherin and their coexpression restores response to gefitinib in non-small-cell lung cancer (NSCLC). Ann. Oncol., 2009, 20(4), 689-695.
[http://dx.doi.org/10.1093/annonc/mdn703] [PMID: 19150934]
[328]
Witta, S.E.; Gemmill, R.M.; Hirsch, F.R.; Coldren, C.D.; Hedman, K.; Ravdel, L.; Helfrich, B.; Dziadziuszko, R.; Chan, D.C.; Sugita, M.; Chan, Z.; Baron, A.; Franklin, W.; Drabkin, H.A.; Girard, L.; Gazdar, A.F.; Minna, J.D.; Bunn, P.A., Jr Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res., 2006, 66(2), 944-950.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1988] [PMID: 16424029]
[329]
Baradari, V.; Höpfner, M.; Huether, A.; Schuppan, D.; Scherübl, H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J. Gastroenterol., 2007, 13(33), 4458-4466.
[http://dx.doi.org/10.3748/wjg.v13.i33.4458] [PMID: 17724801]
[330]
Zhang, G.; Park, M.A.; Mitchell, C.; Hamed, H.; Rahmani, M.; Martin, A.P.; Curiel, D.T.; Yacoub, A.; Graf, M.; Lee, R.; Roberts, J.D.; Fisher, P.B.; Grant, S.; Dent, P. Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin. Cancer Res., 2008, 14(17), 5385-5399.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0469] [PMID: 18765530]
[331]
Bishton, M.J.; Harrison, S.J.; Martin, B.P.; McLaughlin, N.; James, C.; Josefsson, E.C.; Henley, K.J.; Kile, B.T.; Prince, H.M.; Johnstone, R.W. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood, 2011, 117(13), 3658-3668.
[http://dx.doi.org/10.1182/blood-2010-11-318055] [PMID: 21292776]
[332]
Galli, M.; Salmoiraghi, S.; Golay, J.; Gozzini, A.; Crippa, C.; Pescosta, N.; Rambaldi, A. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann. Hematol., 2010, 89(2), 185-190.
[http://dx.doi.org/10.1007/s00277-009-0793-8] [PMID: 19633847]
[333]
Shen, S.; Kozikowski, A.P. Why hydroxamates may not be the best histone deacetylase inhibitors-what some may have forgotten or would rather forget? ChemMedChem, 2016, 11(1), 15-21.
[http://dx.doi.org/10.1002/cmdc.201500486] [PMID: 26603496]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy