[1]
Aly, A.S.I.; Vaughan, A.M.; Kappe, S.H.I. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol., 2009, 63, 195-221.
[2]
Cowman, A.F.; Crabb, B.S. Invasion of red blood cells by malaria parasites. Cell, 2006, 124, 755-766.
[3]
Gilson, P.R.; Crabb, B.S. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol., 2009, 39, 91-96.
[5]
Warhurst, D.C. Understanding resistance to antimalarial 4-aminoquinolines, cinchona alkaloids and the highly hydrophobic arylaminoalcohols. Curr. Sci., 2007, 92(11), 1556-1560.
[6]
Jana, S.; Paliwal, J. Novel molecular targets for antimalarial chemotherapy. Int. J. Antimicrob. Agents, 2007, 30, 4-10.
[7]
Mital, A. Recent advances in antimalarial compounds and their patents. Curr. Med. Chem., 2007, 14, 759-773.
[8]
Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem., 2009, 52, 5271-5294.
[9]
Muller, I.B.; Gupta, R.D.; Luerson, K.; Wrenger, C.; Walter, R.D. Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. Mol. Biochem. Parasitol., 2008, 160, 1-7.
[10]
Sidhu, A.B.S.; Verdier-Pinard, D.; Fidock, D.A. Chloroquine resistance in plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science, 2002, 298(5591), 210-213.
[11]
De Villers, K.A.; Egan, T.J. Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules, 2009, 14, 2868-2887.
[12]
Egan, T.J.; Marques, H.M. The role of haem in the activity of chloroquine and related antimalarial drugs. Coord. Chem. Rev., 1999, 190-192, 493-517.
[13]
Nagel, R.L.; Traore, O.; Carnevale, P.; Kaptuenoche, L.; Elion, J.; Labie, D. In Pilot-study of the use of desferrioxamine in the treatment of Plasmodium-falciparum malaria. Clin. Res., 1991, A244-A244.
[14]
Traore, O.; Carnevale, P.; Kaptuenoche, L.; Mbede, J.; Desfontaine, M.; Elion, J.; Labie, D.; Nagel, R.L. Preliminary-report on the use of desferrioxamine in the treatment of Plasmodium-falciparum malaria. Am. J. Hematol., 1991, 37(3), 206-208.
[15]
Gangarossa, S.; Schiliro, G.; Russo, R. Desferrioxamine in the treatment of Plasmodium falciparum malaria. Am. J. Hematol., 1992, 41(1), 67.
[16]
Walcourt, A.; Kuranstin-Mills, J.; Kwagyan, J.; Adenuga, B.B.; Kalinowski, D.; Lovejoy, D.B.; Lane, D.J.R.; Richardson, D.R. Antiplasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: Effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool. J. Inorg. Biochem., 2013, 129, 43-51.
[17]
Rubin, H.; Salem, J.S.; Li, L-S.; Yang, F-D.; Mama, S.; Wang, Z-M.; Fisher, A.; Hamann, C.S.; Cooperman, B.S. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: A target for antimalarial therapy. Proc. Acad. Nat. Sci. USA., 1993, 90, 9280-9284.
[18]
Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev., 2009, 253, 977-1055.
[19]
Adams, M.; De Kock, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Synthesis, characterization and antiplasmodial evaluation of cyclopalladated thiosemicarbazone complexes. J. Organomet. Chem., 2013, 736, 19-26.
[20]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; Mckerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47, 3212-3219.
[21]
Chellan, P.; Naser, S.; Vivas, L.; Chibale, K.; Smith, G.S. Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: Synthesis, structure and antimalarial activity. J. Organomet. Chem., 2010, 695, 2225-2232.
[22]
Matesanz, A.I.; Souza, P. α-N-Heterocyclic thiosemicarbazone derivatives as potential antitumor agents: A structure-activity relationships approach. Mini Rev. Med. Chem., 2009, 9, 1389-1396.
[23]
Moorthy, N.S.H.N.; Cerqueira, N.M.F.S.A.; Ramos, M.J.; Fernandes, P.A. Aryl- and Heteroaryl-Thiosemicarbazone derivatives and their metal complexes: A pharmacological template. Recent Patents Anticancer Drug Discov., 2013, 8, 1-14.
[24]
Vieira, R.P.; Beraldo, H. Design of Schiff Base-derived ligands: Applications in therapeutics and medical diagnosis.In Ligand Design in Medicinal Inorganic Chemistry; Storr, T., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014.
[25]
West, D.X.; Liberta, A.E.; Padhye, S.B.; Chikate, R.C.; Sonawane, P.B.; Kumbhar, A.S.; Yerande, R.G. Thiosemicarbazone complexes of copper(I1): structural and biological studies. Coord. Chem. Rev., 1993, 123, 49-71.
[26]
Crouch, P.J.; Barnham, K.J. Therapeutic redistribution of metal ions to treat Alzheimer’s disease. Acc. Chem. Res., 2012, 45(9), 1604-1611.
[27]
Mckenzie-Nickson, S.; Bush, A.I.; Barnham, K.J. Bis(thiosemicarbazone) metal complexes as therapeutics for neurodegenerative diseases. Curr. Top. Med. Chem., 2016, 16(27), 3058-3068.
[28]
Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev., 2011, 40, 3005-3018.
[29]
Birch, N.; Wang, X.; Chong, H-S. Iron chelators as therapeutic iron depletion agents. Expert Opin. Ther. Pat., 2006, 16(11), 1533-1556.
[30]
Ettari, R.; Bova, F.; Zappala, M.; Grasso, S.; Micale, N. Falcipain-2 Inhibitors. Med. Res. Rev., 2010, 30(1), 136-167.
[31]
Mertens, A.; Bunge, R. The present status of the chemotherapy of tuberculosis with conteben, a substance of the thiosemicarbazone series - A review. Am. Rev. Tuberc., 1950, 61(1), 20-38.
[32]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[33]
Weinberg, E.D.; Moon, J. Malaria and iron: History and review. Drug Metab. Rev., 2009, 41(4), 644-662.
[34]
Dehdashti, F. . Phase II Trial of 64Cu-ATSM PET/CT in Cervical
Cancer. (NCT00794339 or ACRIN-6682); 2010.
[36]
Williams, J.R.; Trias, E.; Beilby, P.R.; Lopez, N.I.; Labut, E.M.; Bradford, C.S.; Roberts, B.R.; Mcallum, E.J.; Crouch, P.J.; Rhoads, T.W.; Pereira, C.; Son, M.; Elliot, J.L.; Franco, M.C.; Estévez, A.G.; Barbeito, L.; Beckman, J.S. Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SODG93A mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol. Dis., 2016, 89, 1-9.
[37]
Casas, J.S.; Garcia-Tasende, M.S.; Sordo, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev., 2000, 209, 197-261.
[38]
Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev. Med. Chem., 2004, 4, 31-39.
[39]
Glisic, B.D.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans., 2014, 43, 5950-5970.
[40]
Nasser, A.M. Bioactive palladium azomethine chelates, a review of recent research. Synth. React. Inorg. Met.-Org. Chem., 2016, 46, 1349-1366.
[41]
Pelosi, G. Thiosemicarbazone metal complexes: From structure to activity. Open Crystallograph.j 2010, 3, 16-28.
[42]
Shim, J.; Jyothi, N.R.; Farook, N.M. Biological applications of thiosemicarbazones and their metal complexes. Asian J. Chem., 2013, 25(10), 5838-5840.
[43]
Chibale, K.; Musonda, C.C. The synthesis of parasitic cysteine protease and trypanothione reductase inhibitors. Curr. Med. Chem., 2003, 10, 1863-1889.
[44]
Adams, M.; De Kock, C.; Smith, P.J.; Malatji, P.; Hutton, A.T.; Chibale, K.; Smith, G.S. Heterobimetallic ferrocenylthiosemicarbazone palladium(II) complexes: Synthesis, electrochemistry and antiplasmodial evaluation. J. Organomet. Chem., 2013, 739, 15-20.
[45]
Biot, C.; Pradines, B.; Sergeant, M-H.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg. Med. Chem. Lett., 2007, 17, 6436-6438.
[46]
Adams, M.; Li, Y.; Khot, H.; De Kock, C.; Smith, P.J.; Land, K.M.; Chibale, K.; Smith, G.S. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(II)–arene complexes. Dalton Trans., 2013, 42, 4677-4685.
[47]
Baartzes, N.; Stringer, T.; Okombo, J.; Seldon, R.; Warner, D.F.; De Kock, C.; Smith, P.J.; Smith, G.S. Mono- and polynuclear ferrocenylthiosemicarbazones: Synthesis, characterisation and antimicrobial evaluation. J. Organomet. Chem., 2016, 819, 166-172.
[48]
Costa, R.F.F.; Rebolledo, A.P.; Matencio, T.; Calado, H.D.R.; Ardisson, J.D.; Cortes, M.E.; Rodrigues, B.L.; Beraldo, H. Metal complexes of 2-benzoylpyridine semicarbazone: spectral, electrochemical and structural studies. J. Coord. Chem., 2006, 58, 1307-1319.
[49]
Khanye, S.D.; Gut, J.; Rosenthal, P.J.; Chibale, K.; Smith, G.S. Ferrocenylthiosemicarbazones conjugated to a poly(propyleneimine) dendrimer scaffold: Synthesis and in vitro antimalarial activity. J. Organomet. Chem., 2011, 696, 3296-3300.
[50]
Shao, J.; Zhou, B.; Dibilio, A.J.; Zhu, L.; Wang, T.; Qi, C.; Shih, J.; Yen, Y. A Ferrous-triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther., 2006, 5, 586-592.
[51]
Walcourt, A.; Loyevsky, M.; Lovejoy, D.B.; Gordeuk, V.R.; Richardson, D.R. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. Int. J. Biochem. Cell Biol., 2004, 36.
[52]
Agrawal, R.K.; Prasad, S. Synthesis, spectroscopic and physiochemical characterization and biological activity of Co(II) and Ni(II) coordination compounds with 4-aminoantipyrine thiosemicarbazone. Bioinorg. Chem. Appl., 2005, 3(3-4), 271-288.
[53]
Bahl, D.; Athar, F.; Soares, M.B.P.; De Sa, M.S.; Moreira, D.R.M.; Srivastava, R.M.; Leite, A.C.L.; Azam, A. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg. Med. Chem. Lett., 2010, 18, 6857-6864.
[54]
Adams, M.; Barnard, L.; De Kock, C.; Smith, P.J.; Wiesner, L.; Chibale, K.; Smith, G.S. Cyclopalladated organosilane–tethered thiosemicarbazones: novel strategies for improving antiplasmodial activity. Dalton Trans., 2016, 45, 5514-5520.
[55]
Adams, M.; De Kock, C.; Smith, P.J.; Land, K.M.; Liu, N.; Hopper, M.; Hsiao, A.; Burgoyne, A.R.; Stringer, T.; Meyer, M.; Wiesner, L.; Chibale, K.; Smith, G.S. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans., 2015, 44, 2456-2468.
[56]
Anchuri, S.S.; Dhulipala, S.; Thota, S.; Bongoni, R.N.; Yerra, R.; Reddy, A.R.N. Antimicrobial and antimalarial activity of novel synthetic mononuclear ruthenium(II) compounds. J. Chin. Chem. Soc., 2013, 60, 153-159.
[57]
Chellan, P.; Shunmoogam-Gounden, N.; Hendricks, D.T.; Gut, J.; Rosenthal, P.J.; Lategan, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Synthesis, structure and in vitro biological screening of palladium(II) complexes of functionalised salicylaldimine thiosemicarbazones as antimalarial and anticancer agents. Eur. J. Inorg. Chem., 2010, 2010, 3520-3528.
[58]
Chellan, P.; Land, K.M.; Shokar, A.; Au, A.; An, S.H.; Clavel, C.M.; Dyson, P.J.; De Kock, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Exploring the versatility of cycloplatinated thiosemicarbazones as antitumor and antiparasitic agents. Organometallics, 2012, 31, 5791-5799.
[59]
Khanye, S.D.; Bathori, N.B.; Smith, G.S.; Chibale, K. Gold(I) derived thiosemicarbazone complexes with rare halogen–halogen interaction–reduction of [Au(damp-C1,N)Cl2]. Dalton Trans., 2010, 39, 2697-2700.
[60]
Khanye, S.D.; Smith, G.S.; Lategan, C.; Smith, P.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity. J. Inorg. Biochem., 2010, 104, 1079-1083.
[61]
Khanye, S.D.; Wan, B.; Franzhlau, S.G.; Gut, J.; Rosenthal, P.J.; Smith, G.S.; Chibale, K. Synthesis and in vitro antimalarial and antitubercular activity of gold(III) complexes containing thiosemicarbazone ligands. J. Organomet. Chem., 2011, 696, 3392-3396.
[62]
Molter, A.; Rust, J.; Lehmann, C.W.; Deepa, G.; Chiba, P.; Mohr, F. Synthesis, structures and anti-malaria activity of some gold(I) phosphine complexes containing seleno- and thiosemicarbazonato ligands. Dalton Trans., 2011, 40, 9810-9820.
[63]
Navarro, M.; Vasquez, F.; Sanchez-Delgado, R.A.; Perez, H.; Sinou, V.; Schrevel, J. Toward a novel metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of new gold-chloroquine complexes. J. Med. Chem., 2004, 47, 5204-5209.
[64]
Chipeleme, A.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2007, 15, 273-282.
[65]
Lo, Y-C.; Su, W-C.; Ko, T-P.; Wang, N-C.; Wang, A.H-J. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. J. Biomol. Struct. Dyn., 2011, 29(2), 267-282.
[66]
Sweeney, D.; Raymera, M.L.; Lockwood, T.D. Antidiabetic and antimalarial biguanide drugs are metal-interactive antiproteolytic agents. Biochem. Pharmacol., 2003, 66, 663-677.
[67]
Bailey-Wood, R.; Blayney, L.; Anjuir, J.R.; Jacobs, A. The effects of iron deficiency on rat liver enzymes. Br. J. Exp. Pathol., 1975, 56, 193-198.
[68]
Trossini, G.H.G.; Guido, R.V.C.; Oliva, G.; Ferreira, E.I.; Andricopulo, A.D. Quantitative structure–activity relationships for a series of inhibitors of cruzain from Trypanosoma cruzi: Molecular modeling, CoMFA and CoMSIA studies. J. Mol. Graph. Model., 2009, 28, 3-11.
[69]
Farrel, N. Biomedical uses and applications of inorganic chemistry. An overview. Coord. Chem. Rev., 2002, 232, 1-4.
[70]
Agrawal, K.C.; Booth, B.A.; Moore, E.C.; Santorelli, A. Potential antitumor agents. 6. Possible irreversible inhibitors of ribonucleoside diphosphate reductase. J. Med. Chem., 1972, 15(11), 1154-1158.
[71]
Ames, J.R.; Ryan, M.D.; Klayman, D.L.; Kovacic, P. Charge transfer and oxy radicals in antimalarial action. Quinones, dapsone metabolites, metal complexes, iminium ions, and peroxides. J. Free Radic. Biol. Med., 1985, 1, 353-361.
[72]
Bernhardt, P.V.; Sharpe, P.C.; Islam, M.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R. Iron chelators of the dipyridylketone thiosemicarbazone class: Precomplexation and transmetalation effects on anticancer activity. J. Med. Chem., 2009, 52, 407-415.
[73]
Buller, R.; Peterson, M.L.; Almarsson, O.; Leiserowitz, L. Quinoline binding site on malaria pigment crystal: A rational pathway for antimalaria drug design. Cryst. Growth Des., 2002, 2(6), 553-562.
[74]
Stringer, T.; Taylor, D.; De Kock, C.; Guzgay, H.; Au, A.; An, S.H.; Sanchez, B.; O’connor, R.; Patel, N.; Land, K.M.; Smith, P.J.; Hendricks, D.T.; Egan, T.J.; Smith, G.S. Synthesis, characterization, antiparasitic and cytotoxic evaluation of thioureas conjugated to polyamine scaffolds. Eur. J. Med. Chem., 2013, 69, 90-98.
[75]
Cui, F.L.; Liu, Q.F.; Luo, H.X.; Zhang, G.S. Spectroscopic, Viscositic and Molecular Modeling Studies on the Interaction of 3 '-Azido-Daunorubicin Thiosemicarbazone with DNA. J. Fluoresc., 2014, 24(1), 189-195.
[76]
Fan, X.R.; Dong, J.J.; Min, R.; Chen, Y.; Yi, X.Y.; Zhou, J.L.; Zhang, S.C. Cobalt(II) complexes with thiosemicarbazone as potential antitumor agents: synthesis, crystal structures, DNA interactions, and cytotoxicity. J. Coord. Chem., 2013, 66(24), 4268-4279.
[77]
Matesanz, A.I.; Perez, J.M.; Navarro, P.; Moreno, J.M.; Colacio, E.; Souza, P. Synthesis and characterization of novel palladium(II) complexes of bis(thiosemicarbazone). Structure, cytotoxic activity and DNA binding of Pd(II)-benzyl bis(thiosemicarbazonate). J. Inorg. Biochem., 1999, 76(1), 29-37.
[78]
Min, R.; Fan, X.R.; Zhou, P.; Yan, J.; Zhou, J.L.; Zhang, S.C. Synthesis, Crystal Structure, DNA Interaction and Antitumor Activity of Nickel(II) Complex with Quinoline-2-carboxaldehyde N-4-methyl-thiosemicarbazone. Chin. J. Inorg. Chem.,, 2014, 30(8), 1771-1777.
[79]
Palanimuthu, D.; Samuelson, A.G. Dinuclear zinc bis(thiosemicarbazone) complexes: Synthesis, in vitro anticancer activity, cellular uptake and DNA interaction study. Inorg. Chim. Acta, 2013, 408, 152-161.
[80]
Quiroga, A.G.; Perez, J.M.; Alonso, C.; Navarro-Ranninger, C. DNA binding and in vitro antileukemic activity of dimeric and tetrameric platinated complexes derived from p-isopropyl-benzaldehyde thiosemicarbazone. Appl. Organomet. Chem., 1998, 12(12), 809-813.
[81]
Vikneswaran, R.; Eltayeb, N.E.; Ramesh, S.; Yahya, R. New alicyclic thiosemicarbazone chelated zinc(II) antitumor complexes: Interactions with DNA/protein, nuclease activity and inhibition of topoisomerase-I. Polyhedron, 2016, 105, 89-95.
[82]
Yang, Z.Y.; Wang, Y.; Wang, Y. Study on synthesis, structure, and DNA-binding of lanthanide complexes with 2-carboxyl-benzaldiehyde thiosemicarbazone. Bioorg. Med. Chem. Lett., 2007, 17(7), 2096-2101.
[83]
Rajapakse, C.S.K.; Martinez, A.; Naoulou, B.; Jarzecki, A.A.; Suarez, L.; Deregnaucourt, C.; Sinou, V.; Schrevel, J.; Musi, E.; Ambrosini, G.; Schwartz, G.K.; Sanchez-Delgado, R.A. Synthesis, characterization, and in vitro antimalarial and antitumour activity of new ruthenium(II) complexes of chloroquine. Inorg. Chem., 2009, 48, 1122-1131.
[84]
Scovill, J.P.; Klayman, D.L.; Franchino, C.F. 2-Acetylpyridine Thiosemicarbazones. 4. Complexes with Transition Metals as Antimalarial and Antileukemic Agents. J. Med. Chem., 1982, 25, 1261-1264.
[85]
Franz, A.K.; Wilson, S.O. Organosilicon Molecules with Medicinal Applications. J. Med. Chem., 2012, 56, 388-405.
[86]
Biot, C.; Taramelli, D.; Forfar-Bares, I.; Maciejewski, L.A.; Boyce, M.; Nowogrocki, G.; Brocard, J.S.; Basilico, N.; Olliaro, P.; Egan, T.J. Insights into the mechanism of action of ferroquine. relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm., 2005, 2(3), 185-193.
[87]
Supan, C.; Mombo-Ngoma, G.; Dal-Bianco, M.; Ospina Salazar, C.L.; Mazuir, F.; Filali-Ansary, A.; Biot, C.; Ter-Minassian, D.; Ramharter, M.; Kremsner, P.G.; Lell, B. Pharmacokinetics of ferroquine, a novel 4-aminoquinoline, in asymptomatic carriers of plasmodium falciparum infections. Antimicrob. Agents Chemother., 2012, 56(6), 3165-3173.
[88]
Casini, A.; Gabbiani, C.; Sorrentino, F.; Rigobello, M.P.; Bindoli, A.; Geldbach, T.J.; Marrone, A.; Re, N.; Hartinger, C.G.; Dyson, P.J.; Messori, L. Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin b by antitumor ruthenium(II)−arene compounds. J. Med. Chem., 2008, 51(21), 6773-6781.
[89]
Herrmann, C.; Salas, P.F.; Cawthray, J.F.; De Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,1′-Distributed ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31, 5736-5747.
[90]
Biot, C.; Pradines, B.; Sergeant, M-H.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis, and anti-malarial activity of structural chimeras of thiosemicarbazone ferroquine analogues. Bioorg. Med. Chem. Lett., 2007, 17, 6434-6438.