Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Potential of Nanoparticles in Combating Candida Infections

Author(s): Faizan Abul Qais, Mohd Sajjad Ahmad Khan, Iqbal Ahmad* and Abdullah Safar Althubiani

Volume 16, Issue 5, 2019

Page: [478 - 491] Pages: 14

DOI: 10.2174/1570180815666181015145224

Price: $65

Abstract

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections.

Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity.

Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.

Keywords: Antifungal, Candida albicans, candidiasis, nanoparticles, synergy, nanobiotechnology.

Graphical Abstract

[1]
Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Giannini, M.M. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62(1), 10-24.
[2]
Shao, P.L.; Huang, L.M.; Hsueh, P.R. Recent advances and challenges in the treatment of invasive fungal infections. Int. J. Antimicrob. Agents, 2007, 30(6), 487-495.
[3]
Blanco, J.L.; Garcia, M.E. Immune response to fungal infections. Vet. Immunol. Immunopathol., 2008, 125(1), 47-70.
[4]
Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis., 2004, 39(3), 309-317.
[5]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163.
[6]
Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of action and drug resistance. Yeast Membrane Trans., 2016, 327-349.
[7]
Han, S.; Kim, J.; Yim, H.; Hur, J.; Song, W.; Lee, J.; Jeon, S.; Hong, T.; Woo, H.; Yim, D.S. A Population Pharmacokinetic Analysis of Fluconazole to Predict Therapeutic Outcome in Burn Patients with Candida Infection. Antimicrob. Agents Chemother., 2012, AAC-01372.
[8]
Sarkar, S.; Uppuluri, P.; Pierce, C.G.; Lopez-Ribot, J.L. In vitro study of sequential fluconazole and caspofungin treatment against Candida albicans biofilms. Antimicrob. Agents Chemother., 2014, 58(2), 1183-1186.
[9]
Basha, B.N.; Prakasam, K.; Goli, D. Formulation and evaluation of gel containing fluconazole-antifungal agent. Int. J. Drug Dev. Res., 2011, 3(4), 109-128.
[10]
Araujo, R.; Espinel-Ingroff, A. Antifungal resistance: Cellular and molecular mechanisms; Combat. Fungal Infect, 2010, pp. 125-145.
[11]
Khan, M.S.A.; Ahmad, I.; Aqil, F.; Owais, M.; Shahid, M.; Musarrat, J. Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans; Combating. Fungal Infect, 2010, pp. 21-45.
[12]
Zhang, L.; Keogh, S.; Rickard, C.M. Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective. Int. J. Nanomed, 2013, 8, 4453.
[13]
Akbari, F.; Kjellerup, B.V. Elimination of bloodstream infections associated with Candida albicans biofilm in intravascular catheters. Pathogens, 2015, 4(3), 457-469.
[14]
Gu, W.; Guo, D.; Zhang, L.; Xu, D.; Sun, S. The synergistic effect of azoles and fluoxetine against resistant Candida albicans strains is attributed to attenuating fungal virulence. Antimicrob. Agents Chemother., 2016, 60(10), 6179-6188.
[15]
Liu, S.; Hou, Y.; Chen, X.; Gao, Y.; Li, H.; Sun, S. Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents, 2014, 43(5), 395-402.
[16]
Kyle, A.A.; Dahl, M.V. Topical therapy for fungal infections. Am. J. Clin. Dermatol., 2004, 5(6), 443-451.
[17]
Güngör, S.; Erdal, M.S.; Aksu, B. New formulation strategies in topical antifungal therapy. J. Cosmet. Dermatol. Sci. App., 2013, 3(01), 56-65.
[18]
Dismukes, W.E. Introduction to antifungal drugs. Clinic. Infect. Dis., 2000, 30(4), 653-657.
[19]
Walsh, T.J.; Viviani, M.A.; Arathoon, E.; Chiou, C.; Ghannoum, M.; Groll, A.H.; Odds, F.C. New targets and delivery systems for antifungal therapy. Med. Mycol., 2000, 38(sup1), 335-347.
[20]
Khatry, S.; Sirish, N.S.; Sadanandam, M. Novel drug delivery systems for antifungal therapy. Int. J. Pharm. Pharmaceut. Sci., 2010, 2(4), 6-9.
[21]
Yah, C.S.; Simate, G.S. Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU J. Pharmaceut. Sci., 2015, 23(1), 43.
[22]
Dar, M.A.; Ingle, A.; Rai, M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed. Nanotech. Biol. Med., 2013, 9(1), 105-110.
[23]
Bhowmik, Ram. A.S.A.; Gowda, D.V.; Singh, A.; Srivastava1, A.; Osmani, R.A.M. Recent trends and advances in fungal drug delivery. J. Chem. Pharmaceut. Res., 2016, 8(4), 169-178.
[24]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133.
[25]
Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release, 2016, 224, 86-102.
[26]
Zia, Q.; Farzuddin, M.; Ansari, M.A.; Alam, M.; Ali, A.; Ahmad, I., &; Owais, M. Novel drug delivery systems for antifungal compounds; Combating. Fungal Infect, 2010, pp. 485-528.
[27]
Kim, K.J.; Sung, W.S.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 2008, 18(8), 1482-1484.
[28]
Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamalb, P.; Zbořila, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 2009, 30(31), 6333-6340.
[29]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med., 2009, 5(4), 382-386.
[30]
Kandile, N.G.; Zaky, H.T.; Mohamed, M.I.; Mohamed, H.M. Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles. Bullet. Korean Chem. Soc., 2010, 31(12), 3530-3538.
[31]
Monteiro, D.R.; Gorup, L.F.; Silva, S.; Negri, M.; de Camargo, E.R.; Oliveira, R.; Barbosa, D.D.; Henriques, M. Silver colloidal nanoparticles: Antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling, 2011, 27(7), 711-719.
[32]
Xu, Y.; Gao, C.; Li, X.; He, Y.; Zhou, L.; Pang, G.; Sun, S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J. Ocular. Pharmacol. Therapeut., 2013, 29(2), 270-274.
[33]
Puišo, J.; Jonkuvienė, D.; Mačionienė, I.; Šalomskienė, J.; Jasutienė, I.; Kondrotas, R. Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloid Surf. B Biointerfaces, 2014, 121, 214-221.
[34]
Sanjenbam, P.; Gopal, J.V.; Kannabiran, K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J. Mycol. Méd. J. Med. Mycol., 2014, 24(3), 211-219.
[35]
Suyana, P.; Kumar, S.N.; Madhavan, N.; Kumar, B.D.; Nair, B.N.; Mohamed, A.P.; Warrier, K.G. Hareesh, U.S. Reactive oxygen species (ROS) mediated enhanced anti-candidal activity of ZnS–ZnO nanocomposites with low inhibitory concentrations. RSC Adv, 2015, 5(94), 76718-76728.
[36]
Ashajyothi, C.; Prabhurajeshwar, C.; Handral, H.K.; Kelmani, C. Investigation of antifungal and anti-mycelium activities using biogenic nanoparticles: an eco-friendly approach. Environ. Nanotechnol. Monit. Manag., 2016, 5, 81-87.
[37]
Moazeni, M.; Kelidari, H.R.; Saeedi, M.; Morteza-Semnani, K.; Nabili, M.; Gohar, A.A.; Akbari, J.; Lotfali, E.; Nokhodchi, A. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf. B Biointerfaces, 2016, 142, 400-407.
[38]
Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med., 2012, 125(1), S3-S13.
[39]
Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Jurek, A.Z.; Kuś, P.M.; Milewski, S. Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Ind. J. Microbiol., 2015, 55(2), 175-183.
[40]
Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharmaceut. Sci., 2013, 49(2), 311-322.
[41]
Bonilla, J.J.A.; Guerrero, D.J.P.; Suárez, C.I.S.; López, C.C.O. Sáez, R.G.T. In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World J. Microbiol. Biotechnol., 2015, 31(11), 1801-1809.
[42]
Alimehr, S.; Abad, H.S.E.; Shahverdi, A.; Hashemi, J.; Zomorodian, K.; Moazeni, M.; Vosoghian, S.; Rezaie, S. Comparison of difference between fluconazole and silver nanoparticles in antimicrobial effect on fluconazole-resistant candida albicans strains. Arch. Ped. Infect. Dis., 2015, 3(2), e21481.
[43]
Jalal, M.; Ansari, M.A.; Shukla, A.K.; Ali, S.G.; Khan, H.M.; Pal, R.; Alam, J.; Cameotra, S.S. Green synthesis and antifungal activity of Al2O3 NPs against fluconazole-resistant Candida spp isolated from a tertiary care hospital. RSC Adv, 2016, 6(109), 107577-107590.
[44]
Longhi, C.; Santos, J.P.; Morey, A.T.; Marcato, P.D.; Durán, N.; Pinge-Filho, P.; Nakazato, G.; Yamada-Ogatta, S.F.; Yamauchi, L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Sabouraudia, 2015, 54(4), 428-432.
[45]
Lee, J.; Kim, K.J.; Sung, W.S.; Kim, J.G.; Lee, D.G. The silver nanoparticle (nano-Ag): A new model for antifungal agents; Silver Nanopart, 2010, pp. 295-308.
[46]
Kim, K.J.; Sung, W.S.; Suh, B.K.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 2009, 22(2), 235-242.
[47]
Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed, 2010, 5(1), 1085-1094.
[48]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Material. Res., 2000, 52(4), 662-668.
[49]
Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924.
[50]
Yang, E.J.; Jang, J.; Kim, S.; Choi, I.H. Silver nanoparticles as a smart antimicrobial agent. J. Bacteriol. Virol., 2012, 42(2), 177-179.
[51]
Zawrah, M.F.; El-Moez, S.A.; Center, D. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci. J., 2011, 8(4), 37-44.
[52]
Monteiro, D.R.; Silva, S.; Negri, M.; Gorup, L.F.; Camargo, E.R.; Oliveira, R.; Barbosa, D.B.; Henriques, M. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses, 2013, 56(6), 672-680.
[53]
Vazquez-Muñoz, R.; Avalos-Borja, M.; Castro-Longoria, E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One, 2014, 9(10), e108876.
[54]
Ogar, A.; Tylko, G.; Turnau, K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci. Total Envir., 2015, 521, 305-314.
[55]
Hwang, I.S.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol., 2012, 61(12), 1719-1726.
[56]
Kipp, J.E. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1), 109-122.
[57]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014, 37.
[http://dx.doi.org/10.1155/ 2014/869269]
[58]
Alizadeh, H.; Salouti, M.; Shapouri, R. Bactericidal effect of silver nanoparticles on intramacrophage brucella abortus 544. Jundishapur J. Microbiol., 2014, 7(3), e9039.
[59]
Yah, C.S.; Simate, G.S.; Iyuke, S.E. Nanoparticles toxicity and their routes of exposures. Pak. J. Pharmaceut. Sci., 2012, 25(2), 477-491.
[60]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[61]
Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release, 2006, 114(3), 343-347.
[62]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[63]
Seki, J.; Sonoke, S.; Saheki, A.; Fukui, H.; Sasaki, H.; Mayumi, T. A nanometer lipid emulsion, lipid nano-sphere (LNS®), as a parenteral drug carrier for passive drug targeting. Int. J. Pharmaceut., 2004, 273(1), 75-83.
[64]
Fang, C.; Shi, B.; Pei, Y.Y.; Hong, M.H.; Wu, J., &; Chen, H.Z. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci., 2006, 27(1), 27-36.
[65]
Yang, W.; Wiederhold, N.P. Williams III, R.O. Drug delivery strategies for improved azole antifungal action. Exp Opin. Drug Deliv., 2008, 5(11), 1199-1216.
[66]
Cassano, R.; Ferrarelli, T.; Mauro, M.V.; Cavalcanti, P.; Picci, N.; Trombino, S. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv., 2016, 23(3), 1037-1046.
[67]
Bianco, M.A.; Gallarate, M.; Trotta, M.; Battaglia, L. Amphotericin B loaded SLN prepared with the coacervation technique. J. Drug Deliv. Sci. Technol., 2010, 20(3), 187-191.
[68]
Gupta, M.; Vyas, S.P. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem. Physics. Lip, 2012, 165(4), 454-461.
[69]
Jain, S.; Valvi, P.U.; Swarnakar, N.K.; Thanki, K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharmaceutics., 2012, 9(9), 2542-2553.
[70]
Santos, S.S.; Lorenzoni, A.; Ferreira, L.M.; Mattiazzi, J.; Adams, A.I.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater. Sci. Eng. C, 2013, 33(3), 1389-1394.
[71]
Shekhawat, P.B. Preparation and evaluation of clotrimazole nanostructured lipid carrier for topical delivery. Int. J. Pharm. Biosci., 2013, 4, 407-416.
[72]
Ravani, L.; Esposito, E.; Bories, C.; Lievin-Le Moal, V.; Loiseau, P.M.; Djabourov, M.; Cortesi, R. Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int. J. Pharm., 2013, 454(2), 695-702.
[73]
Sanchez, D.A.; Schairer, D.; Tuckman-Vernon, C.; Chouake, J.; Kutner, A.; Makdisi, J.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomed. Nanotechnol. Biol. Med., 2014, 10(1), 269-277.
[74]
Yang, Z.; Chen, M.; Yang, M.; Chen, J.; Fang, W.; Xu, P. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int. J. Nanomed, 2014, 9, 327-336.
[75]
Tang, X.; Jiao, R.; Xie, C.; Xu, L.; Huo, Z.; Dai, J.; Qian, Y.; Xu, W.; Hou, W.; Wang, J.; Liang, Y. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int. J. Clin. Exp. Med., 2015, 8(4), 5150-5162.
[76]
Verma, P.; Ahuja, M. Optimization, characterization and evaluation of chitosan-tailored cubic nanoparticles of clotrimazole. Int. J. Biol. Macromol., 2015, 73, 138-145.
[77]
Pandurangan, D.K.; Bodagala, P.; Palanirajan, V.K.; Govindaraj, S. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int. J. Pharmaceut. Investig., 2016, 6(1), 56.
[78]
Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Intig. J. Pharm., 2004, 278(1), 71-77.
[79]
Sanna, V.; Gavini, E.; Cossu, M.; Rassu, G.; Giunchedi, P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in‐vitro characterization, ex‐vivo and in‐vivo studies. J. Pharm. Pharmacol., 2007, 59(8), 1057-1064.
[80]
Souto, E.B.; Müller, R.H. Rheological and in vitro release behaviour of clotrimazole-containing aqueous SLN dispersions and commercial creams. Die Pharmazie-An Int. J. Pharm. Sci., 2007, 62(7), 505-509.
[81]
Bhalekar, M.R.; Pokharkar, V.; Madgulkar, A.; Patil, N.; Patil, N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech, 2009, 10(1), 289-296.
[82]
Chen, Y.C.; Liu, D.Z.; Liu, J.J.; Chang, T.W.; Ho, H.O.; Sheu, M.T. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int. J. Nanomed, 2012, 7, 4409-4418.
[83]
Samein, L.H. Preparation and evaluation of nystatin-loaded solid-lipid-nanoparticles for topical delivery. Asian J. Pharmaceut. Res., 2014, 4(1), 44-51.
[84]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[85]
Khare, A.; Singh, I.; Pawar, P.; Grover, K. Design and evaluation of voriconazole loaded solid lipid nanoparticles for ophthalmic application. J. Drug Deliv., 2016.
[http://dx.doi.org/10.1155/2016/6590361]
[86]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[87]
Vecitis, C.D.; Zodrow, K.R.; Kang, S.; Elimelech, M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano, 2010, 4(9), 5471-5479.
[88]
Aboulaich, A.; Tilmaciu, C.M.; Merlin, C.; Mercier, C.; Guilloteau, H.; Medjahdi, G.; Schneider, R. Physicochemical properties and cellular toxicity of (poly) aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology, 2012, 23(33), 335101.
[89]
Kirthi, A.V.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Jayaseelan, C.; Velayutham, K. Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol. Res., 2011, 109(2), 461-472.
[90]
Nuñez-Anita, R.E.; Acosta-Torres, L.S.; Vilar-Pineda, J.; Martínez-Espinosa, J.C.; de la Fuente-Hernández, J.; Castaño, V.M. Toxicology of antimicrobial nanoparticles for prosthetic devices. Int. J. Nanomed, 2014, 9, 3999-4006.
[91]
Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Envir. Sci. Technol., 2008, 42(23), 8959-8964.
[92]
Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci., 2006, 92(1), 5-22.
[93]
Sayes, C.M.; Gobin, A.M.; Ausman, K.D.; Mendez, J.; West, J.L.; Colvin, V.L. Nano-C 60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26(36), 7587-7595.
[94]
Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[95]
Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol., 2011, 2012, 26.
[http://dx.doi.org/10.1155/2012/713687]
[96]
Zoroddu, M.A.; Medici, S.; Ledda, A.; Nurchi, V.M.; Lachowicz, J.I.; Peana, M. Toxicity of nanoparticles. Curr. Med. Chem., 2014, 21, 3837-3853.
[97]
Mohapatra, S.C.; Tiwari, H.K.; Singla, M.; Rathi, B.; Sharma, A.; Mahiya, K.; Kumar, M.; Sinha, S.; Chauhan, S.S. Antimalarial evaluation of copper (II) nanohybrid solids: Inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum. JBIC J. Biol. Inorg. Chem., 2010, 15(3), 373-385.
[98]
Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schlecht, S.; Herrmann, A.; Haag, R. Inhibition of influenza virus infection by multivalent sialic‐acid‐functionalized gold nanoparticles. Small, 2010, 6(24), 2900-2906.
[99]
Ahmed, F.; Santos, C.M.; Mangadlao, J.; Advincula, R.; Rodrigues, D.F. Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: Performance and toxicity testing. Water Res., 2013, 47(12), 3966-3975.
[100]
Uhm, S.H.; Lee, S.B.; Song, D.H.; Kwon, J.S.; Han, J.G.; Kim, K.N. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications. J. Nanosci. Nanotechnol., 2014, 14(10), 7847-7854.
[101]
Cooper, R.J.; Spitzer, N. Silver nanoparticles at sublethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult neural stem cells. Neurotoxicology, 2015, 48, 231-238.
[102]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloid Surf. B Biointerf, 2016, 139, 17-24.
[103]
Cakić, M.; Glišić, S.; Nikolić, G.; Nikolić, G.M.; Cakić, K.; Cvetinov, M. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J. Mol. Struct., 2016, 1110, 156-161.
[104]
Rajeshkumar, S.; Malarkodi, C.; Vanaja, M.; Annadurai, G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct., 2016, 1116, 165-173.
[105]
Geethalakshmi, R.; Sarada, D.V.L. Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Ind. Crops Prod., 2013, 51, 107-115.
[106]
Kanipandian, N.; Thirumurugan, R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind. Crops Prod., 2014, 55, 1-10.
[107]
Prucek, R.; Tuček, J.; Kilianová, M.; Panáček, A.; Kvítek, L.; Filip, J.; Kolář, M.; Tománková, K.; Zbořil, R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials, 2011, 32(21), 4704-4713.
[108]
Li, C.; Wang, X.; Chen, F.; Zhang, C.; Zhi, X.; Wang, K.; Cui, D. The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials, 2013, 34(15), 3882-3890.
[109]
Wani, I.A.; Ahmad, T. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloid Surf. B Biointerf, 2013, 101, 162-170.
[110]
Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275.
[111]
Hameed, A.S.H.; Karthikeyan, C.; Kumar, V.S.; Kumaresan, S.; Sasikumar, S. Effect of Mg 2+, Ca 2+, Sr 2+ and Ba 2+ metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Mater. Sci. Eng. C, 2015, 52, 171-177.
[112]
Netala, V.R.; Kotakadi, V.S.; Domdi, L.; Gaddam, S.A.; Bobbu, P.; Venkata, S.K.; Ghosh, S.B.; Tartte, V. Biogenic silver nanoparticles: Efficient and effective antifungal agents. Appl. Nanosci., 2016, 6(4), 475-484.
[113]
Khan, S.; Alam, F.; Azam, A.; Khan, A.U. Gold nanoparticles enhance methylene blue-induced photodynamic therapy:A novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomed, 2012, 7, 3245-3257.
[114]
Paulo, C.S.; Vidal, M.; Ferreira, L.S. Antifungal nanoparticles and surfaces. Biomacromolecules., 2010, 11(10), 2810-2817.
[115]
Nasrollahi, A.; Pourshamsian, K.H.; Mansourkiaee, P. Antifungal activity of silver nanoparticles on some of fungi. Int. J. Nano Dimension., 2011, 1(3), 233-239.
[116]
MR K.P.; Umamaheswari, K.; Sharmili, A.; Rajendiran, N. Antifungal activity of silver nanoparticles synthesized using phenylalanine conjugated cholic acid salts & tyrosine conjugated cholic acid salts against candida species. Int. J. Innov. Res. Dev., 2014, 3(6), 244-248.
[117]
Karimiyan, A.; Najafzadeh, H.; Ghorbanpour, M.; Hekmati-Moghaddam, S.H. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J. Res. Med. Sci., 2015, 17(10), e2179.
[118]
Hamid, S.; Zainab, S.; Faryal, R.; Ali, N.; Sharafat, I. Inhibition of secreted aspartyl proteinase activity in biofilms of Candida species by mycogenic silver nanoparticles. Artificial. Cells Nanomed. Biotechnol., 2017, 1-7.
[http://dx.doi.org/10.1080/21691401.2017.1328688]
[119]
Selvaraj, M.; Pandurangan, P.; Ramasami, N.; Rajendran, S.B.; Sangilimuthu, S.N.; Perumal, P. Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Appl. Biochem. Biotechnol., 2014, 173(1), 55-66.
[120]
Abdehgah, I.B.; Khodav, A.; Shamsazar, A.; Negahdary, M.; Jafarzadeh, M.; Rahimi, G. In vitro antifungal effects of biosynthesized silver nanoparticle by Candida albicans against Candida glabrata. Biomed. Res., 2017, 28(7), 2870-2876.
[121]
Seddighi, N.S.; Salari, S.; Izadi, A.R. Evaluation of antifungal effect of iron-oxide nanoparticles against different Candida species. IET Nanobiotechnol., 2017, 11(7), 883-888.
[122]
Khatoon, N.; Mishra, A.; Alam, H.; Manzoor, N.; Sardar, M. Biosynthesis, characterization, and antifungal activity of the silver nanoparticles against pathogenic Candida species. Bio. Nano. Sci., 2015, 5(2), 65-74.
[123]
Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol, 2015, 13(1), 91-93.
[124]
Ashour, S.M. Silver nanoparticles as antimicrobial agent from Kluyveromyces marxianus and Candida utilis. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(8), 384-396.
[125]
Qasim, M.; Singh, B.R.; Naqvi, A.H.; Paik, P.; Das, D. Silver nanoparticles embedded mesoporous SiO2 nanosphere: An effective anticandidal agent against Candida albicans 077. Nanotechnology, 2015, 26(28), 285102.
[126]
Samrat, K.; Nikhil, N.S.; Namasivamyam, S.K.R.; Sharath, R.; Chandraprabha, M.N.; Harish, B.G.; Muktha, H.; Kashyap, R.G. Evaluation of improved antifungal activity of fluconazole-silver nanoconjugate against pathogenic fungi. Materials Today: Proceed., 2016, 3(6), 1958-1967.
[127]
Mohanty, B.; Majumdar, D.K.; Mishra, S.K.; Panda, A.K.; Patnaik, S. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm. Dev. Technol., 2015, 20(4), 458-464.
[128]
Jain, S.; Jain, S.; Khare, P.; Gulbake, A.; Bansal, D.; Jain, S.K. Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv., 2010, 17(6), 443-451.
[129]
Italia, J.L.; Sharp, A.; Carter, K.C.; Warn, P.; Kumar, M.R. Peroral amphotericin B polymer nanoparticles lead to comparable or superior in vivo antifungal activity to that of intravenous Ambisome® or Fungizone™. PLoS One, 2011, 6(10), e25744.
[130]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy