[1]
Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Giannini, M.M. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62(1), 10-24.
[2]
Shao, P.L.; Huang, L.M.; Hsueh, P.R. Recent advances and challenges in the treatment of invasive fungal infections. Int. J. Antimicrob. Agents, 2007, 30(6), 487-495.
[3]
Blanco, J.L.; Garcia, M.E. Immune response to fungal infections. Vet. Immunol. Immunopathol., 2008, 125(1), 47-70.
[4]
Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis., 2004, 39(3), 309-317.
[5]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163.
[6]
Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of action and drug resistance. Yeast Membrane Trans., 2016, 327-349.
[7]
Han, S.; Kim, J.; Yim, H.; Hur, J.; Song, W.; Lee, J.; Jeon, S.; Hong, T.; Woo, H.; Yim, D.S. A Population Pharmacokinetic Analysis of Fluconazole to Predict Therapeutic Outcome in Burn Patients with Candida Infection. Antimicrob. Agents Chemother., 2012, AAC-01372.
[8]
Sarkar, S.; Uppuluri, P.; Pierce, C.G.; Lopez-Ribot, J.L. In vitro study of sequential fluconazole and caspofungin treatment against Candida albicans biofilms. Antimicrob. Agents Chemother., 2014, 58(2), 1183-1186.
[9]
Basha, B.N.; Prakasam, K.; Goli, D. Formulation and evaluation of gel containing fluconazole-antifungal agent. Int. J. Drug Dev. Res., 2011, 3(4), 109-128.
[10]
Araujo, R.; Espinel-Ingroff, A. Antifungal resistance: Cellular and molecular mechanisms; Combat. Fungal Infect, 2010, pp. 125-145.
[11]
Khan, M.S.A.; Ahmad, I.; Aqil, F.; Owais, M.; Shahid, M.; Musarrat, J. Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans; Combating. Fungal Infect, 2010, pp. 21-45.
[12]
Zhang, L.; Keogh, S.; Rickard, C.M. Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective. Int. J. Nanomed, 2013, 8, 4453.
[13]
Akbari, F.; Kjellerup, B.V. Elimination of bloodstream infections associated with Candida albicans biofilm in intravascular catheters. Pathogens, 2015, 4(3), 457-469.
[14]
Gu, W.; Guo, D.; Zhang, L.; Xu, D.; Sun, S. The synergistic effect of azoles and fluoxetine against resistant Candida albicans strains is attributed to attenuating fungal virulence. Antimicrob. Agents Chemother., 2016, 60(10), 6179-6188.
[15]
Liu, S.; Hou, Y.; Chen, X.; Gao, Y.; Li, H.; Sun, S. Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents, 2014, 43(5), 395-402.
[16]
Kyle, A.A.; Dahl, M.V. Topical therapy for fungal infections. Am. J. Clin. Dermatol., 2004, 5(6), 443-451.
[17]
Güngör, S.; Erdal, M.S.; Aksu, B. New formulation strategies in topical antifungal therapy. J. Cosmet. Dermatol. Sci. App., 2013, 3(01), 56-65.
[18]
Dismukes, W.E. Introduction to antifungal drugs. Clinic. Infect. Dis., 2000, 30(4), 653-657.
[19]
Walsh, T.J.; Viviani, M.A.; Arathoon, E.; Chiou, C.; Ghannoum, M.; Groll, A.H.; Odds, F.C. New targets and delivery systems for antifungal therapy. Med. Mycol., 2000, 38(sup1), 335-347.
[20]
Khatry, S.; Sirish, N.S.; Sadanandam, M. Novel drug delivery systems for antifungal therapy. Int. J. Pharm. Pharmaceut. Sci., 2010, 2(4), 6-9.
[21]
Yah, C.S.; Simate, G.S. Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU J. Pharmaceut. Sci., 2015, 23(1), 43.
[22]
Dar, M.A.; Ingle, A.; Rai, M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed. Nanotech. Biol. Med., 2013, 9(1), 105-110.
[23]
Bhowmik, Ram. A.S.A.; Gowda, D.V.; Singh, A.; Srivastava1, A.; Osmani, R.A.M. Recent trends and advances in fungal drug delivery. J. Chem. Pharmaceut. Res., 2016, 8(4), 169-178.
[24]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133.
[25]
Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release, 2016, 224, 86-102.
[26]
Zia, Q.; Farzuddin, M.; Ansari, M.A.; Alam, M.; Ali, A.; Ahmad, I., &; Owais, M. Novel drug delivery systems for antifungal compounds; Combating. Fungal Infect, 2010, pp. 485-528.
[27]
Kim, K.J.; Sung, W.S.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 2008, 18(8), 1482-1484.
[28]
Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamalb, P.; Zbořila, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 2009, 30(31), 6333-6340.
[29]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med., 2009, 5(4), 382-386.
[30]
Kandile, N.G.; Zaky, H.T.; Mohamed, M.I.; Mohamed, H.M. Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles. Bullet. Korean Chem. Soc., 2010, 31(12), 3530-3538.
[31]
Monteiro, D.R.; Gorup, L.F.; Silva, S.; Negri, M.; de Camargo, E.R.; Oliveira, R.; Barbosa, D.D.; Henriques, M. Silver colloidal nanoparticles: Antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling, 2011, 27(7), 711-719.
[32]
Xu, Y.; Gao, C.; Li, X.; He, Y.; Zhou, L.; Pang, G.; Sun, S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J. Ocular. Pharmacol. Therapeut., 2013, 29(2), 270-274.
[33]
Puišo, J.; Jonkuvienė, D.; Mačionienė, I.; Šalomskienė, J.; Jasutienė, I.; Kondrotas, R. Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloid Surf. B Biointerfaces, 2014, 121, 214-221.
[34]
Sanjenbam, P.; Gopal, J.V.; Kannabiran, K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J. Mycol. Méd. J. Med. Mycol., 2014, 24(3), 211-219.
[35]
Suyana, P.; Kumar, S.N.; Madhavan, N.; Kumar, B.D.; Nair, B.N.; Mohamed, A.P.; Warrier, K.G. Hareesh, U.S. Reactive oxygen species (ROS) mediated enhanced anti-candidal activity of ZnS–ZnO nanocomposites with low inhibitory concentrations. RSC Adv, 2015, 5(94), 76718-76728.
[36]
Ashajyothi, C.; Prabhurajeshwar, C.; Handral, H.K.; Kelmani, C. Investigation of antifungal and anti-mycelium activities using biogenic nanoparticles: an eco-friendly approach. Environ. Nanotechnol. Monit. Manag., 2016, 5, 81-87.
[37]
Moazeni, M.; Kelidari, H.R.; Saeedi, M.; Morteza-Semnani, K.; Nabili, M.; Gohar, A.A.; Akbari, J.; Lotfali, E.; Nokhodchi, A. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf. B Biointerfaces, 2016, 142, 400-407.
[38]
Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med., 2012, 125(1), S3-S13.
[39]
Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Jurek, A.Z.; Kuś, P.M.; Milewski, S. Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Ind. J. Microbiol., 2015, 55(2), 175-183.
[40]
Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharmaceut. Sci., 2013, 49(2), 311-322.
[41]
Bonilla, J.J.A.; Guerrero, D.J.P.; Suárez, C.I.S.; López, C.C.O. Sáez, R.G.T. In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species. World J. Microbiol. Biotechnol., 2015, 31(11), 1801-1809.
[42]
Alimehr, S.; Abad, H.S.E.; Shahverdi, A.; Hashemi, J.; Zomorodian, K.; Moazeni, M.; Vosoghian, S.; Rezaie, S. Comparison of difference between fluconazole and silver nanoparticles in antimicrobial effect on fluconazole-resistant candida albicans strains. Arch. Ped. Infect. Dis., 2015, 3(2), e21481.
[43]
Jalal, M.; Ansari, M.A.; Shukla, A.K.; Ali, S.G.; Khan, H.M.; Pal, R.; Alam, J.; Cameotra, S.S. Green synthesis and antifungal activity of Al2O3 NPs against fluconazole-resistant Candida spp isolated from a tertiary care hospital. RSC Adv, 2016, 6(109), 107577-107590.
[44]
Longhi, C.; Santos, J.P.; Morey, A.T.; Marcato, P.D.; Durán, N.; Pinge-Filho, P.; Nakazato, G.; Yamada-Ogatta, S.F.; Yamauchi, L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Sabouraudia, 2015, 54(4), 428-432.
[45]
Lee, J.; Kim, K.J.; Sung, W.S.; Kim, J.G.; Lee, D.G. The silver nanoparticle (nano-Ag): A new model for antifungal agents; Silver Nanopart, 2010, pp. 295-308.
[46]
Kim, K.J.; Sung, W.S.; Suh, B.K.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 2009, 22(2), 235-242.
[47]
Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed, 2010, 5(1), 1085-1094.
[48]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Material. Res., 2000, 52(4), 662-668.
[49]
Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924.
[50]
Yang, E.J.; Jang, J.; Kim, S.; Choi, I.H. Silver nanoparticles as a smart antimicrobial agent. J. Bacteriol. Virol., 2012, 42(2), 177-179.
[51]
Zawrah, M.F.; El-Moez, S.A.; Center, D. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci. J., 2011, 8(4), 37-44.
[52]
Monteiro, D.R.; Silva, S.; Negri, M.; Gorup, L.F.; Camargo, E.R.; Oliveira, R.; Barbosa, D.B.; Henriques, M. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses, 2013, 56(6), 672-680.
[53]
Vazquez-Muñoz, R.; Avalos-Borja, M.; Castro-Longoria, E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One, 2014, 9(10), e108876.
[54]
Ogar, A.; Tylko, G.; Turnau, K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci. Total Envir., 2015, 521, 305-314.
[55]
Hwang, I.S.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol., 2012, 61(12), 1719-1726.
[56]
Kipp, J.E. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1), 109-122.
[58]
Alizadeh, H.; Salouti, M.; Shapouri, R. Bactericidal effect of silver nanoparticles on intramacrophage brucella abortus 544. Jundishapur J. Microbiol., 2014, 7(3), e9039.
[59]
Yah, C.S.; Simate, G.S.; Iyuke, S.E. Nanoparticles toxicity and their routes of exposures. Pak. J. Pharmaceut. Sci., 2012, 25(2), 477-491.
[60]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[61]
Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release, 2006, 114(3), 343-347.
[62]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[63]
Seki, J.; Sonoke, S.; Saheki, A.; Fukui, H.; Sasaki, H.; Mayumi, T. A nanometer lipid emulsion, lipid nano-sphere (LNS®), as a parenteral drug carrier for passive drug targeting. Int. J. Pharmaceut., 2004, 273(1), 75-83.
[64]
Fang, C.; Shi, B.; Pei, Y.Y.; Hong, M.H.; Wu, J., &; Chen, H.Z. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci., 2006, 27(1), 27-36.
[65]
Yang, W.; Wiederhold, N.P. Williams III, R.O. Drug delivery strategies for improved azole antifungal action. Exp Opin. Drug Deliv., 2008, 5(11), 1199-1216.
[66]
Cassano, R.; Ferrarelli, T.; Mauro, M.V.; Cavalcanti, P.; Picci, N.; Trombino, S. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv., 2016, 23(3), 1037-1046.
[67]
Bianco, M.A.; Gallarate, M.; Trotta, M.; Battaglia, L. Amphotericin B loaded SLN prepared with the coacervation technique. J. Drug Deliv. Sci. Technol., 2010, 20(3), 187-191.
[68]
Gupta, M.; Vyas, S.P. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem. Physics. Lip, 2012, 165(4), 454-461.
[69]
Jain, S.; Valvi, P.U.; Swarnakar, N.K.; Thanki, K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharmaceutics., 2012, 9(9), 2542-2553.
[70]
Santos, S.S.; Lorenzoni, A.; Ferreira, L.M.; Mattiazzi, J.; Adams, A.I.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater. Sci. Eng. C, 2013, 33(3), 1389-1394.
[71]
Shekhawat, P.B. Preparation and evaluation of clotrimazole nanostructured lipid carrier for topical delivery. Int. J. Pharm. Biosci., 2013, 4, 407-416.
[72]
Ravani, L.; Esposito, E.; Bories, C.; Lievin-Le Moal, V.; Loiseau, P.M.; Djabourov, M.; Cortesi, R. Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int. J. Pharm., 2013, 454(2), 695-702.
[73]
Sanchez, D.A.; Schairer, D.; Tuckman-Vernon, C.; Chouake, J.; Kutner, A.; Makdisi, J.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomed. Nanotechnol. Biol. Med., 2014, 10(1), 269-277.
[74]
Yang, Z.; Chen, M.; Yang, M.; Chen, J.; Fang, W.; Xu, P. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int. J. Nanomed, 2014, 9, 327-336.
[75]
Tang, X.; Jiao, R.; Xie, C.; Xu, L.; Huo, Z.; Dai, J.; Qian, Y.; Xu, W.; Hou, W.; Wang, J.; Liang, Y. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int. J. Clin. Exp. Med., 2015, 8(4), 5150-5162.
[76]
Verma, P.; Ahuja, M. Optimization, characterization and evaluation of chitosan-tailored cubic nanoparticles of clotrimazole. Int. J. Biol. Macromol., 2015, 73, 138-145.
[77]
Pandurangan, D.K.; Bodagala, P.; Palanirajan, V.K.; Govindaraj, S. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int. J. Pharmaceut. Investig., 2016, 6(1), 56.
[78]
Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Intig. J. Pharm., 2004, 278(1), 71-77.
[79]
Sanna, V.; Gavini, E.; Cossu, M.; Rassu, G.; Giunchedi, P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in‐vitro characterization, ex‐vivo and in‐vivo studies. J. Pharm. Pharmacol., 2007, 59(8), 1057-1064.
[80]
Souto, E.B.; Müller, R.H. Rheological and in vitro release behaviour of clotrimazole-containing aqueous SLN dispersions and commercial creams. Die Pharmazie-An Int. J. Pharm. Sci., 2007, 62(7), 505-509.
[81]
Bhalekar, M.R.; Pokharkar, V.; Madgulkar, A.; Patil, N.; Patil, N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech, 2009, 10(1), 289-296.
[82]
Chen, Y.C.; Liu, D.Z.; Liu, J.J.; Chang, T.W.; Ho, H.O.; Sheu, M.T. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int. J. Nanomed, 2012, 7, 4409-4418.
[83]
Samein, L.H. Preparation and evaluation of nystatin-loaded solid-lipid-nanoparticles for topical delivery. Asian J. Pharmaceut. Res., 2014, 4(1), 44-51.
[84]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[86]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[87]
Vecitis, C.D.; Zodrow, K.R.; Kang, S.; Elimelech, M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano, 2010, 4(9), 5471-5479.
[88]
Aboulaich, A.; Tilmaciu, C.M.; Merlin, C.; Mercier, C.; Guilloteau, H.; Medjahdi, G.; Schneider, R. Physicochemical properties and cellular toxicity of (poly) aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology, 2012, 23(33), 335101.
[89]
Kirthi, A.V.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Jayaseelan, C.; Velayutham, K. Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol. Res., 2011, 109(2), 461-472.
[90]
Nuñez-Anita, R.E.; Acosta-Torres, L.S.; Vilar-Pineda, J.; Martínez-Espinosa, J.C.; de la Fuente-Hernández, J.; Castaño, V.M. Toxicology of antimicrobial nanoparticles for prosthetic devices. Int. J. Nanomed, 2014, 9, 3999-4006.
[91]
Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Envir. Sci. Technol., 2008, 42(23), 8959-8964.
[92]
Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci., 2006, 92(1), 5-22.
[93]
Sayes, C.M.; Gobin, A.M.; Ausman, K.D.; Mendez, J.; West, J.L.; Colvin, V.L. Nano-C 60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26(36), 7587-7595.
[94]
Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[96]
Zoroddu, M.A.; Medici, S.; Ledda, A.; Nurchi, V.M.; Lachowicz, J.I.; Peana, M. Toxicity of nanoparticles. Curr. Med. Chem., 2014, 21, 3837-3853.
[97]
Mohapatra, S.C.; Tiwari, H.K.; Singla, M.; Rathi, B.; Sharma, A.; Mahiya, K.; Kumar, M.; Sinha, S.; Chauhan, S.S. Antimalarial evaluation of copper (II) nanohybrid solids: Inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum. JBIC J. Biol. Inorg. Chem., 2010, 15(3), 373-385.
[98]
Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schlecht, S.; Herrmann, A.; Haag, R. Inhibition of influenza virus infection by multivalent sialic‐acid‐functionalized gold nanoparticles. Small, 2010, 6(24), 2900-2906.
[99]
Ahmed, F.; Santos, C.M.; Mangadlao, J.; Advincula, R.; Rodrigues, D.F. Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: Performance and toxicity testing. Water Res., 2013, 47(12), 3966-3975.
[100]
Uhm, S.H.; Lee, S.B.; Song, D.H.; Kwon, J.S.; Han, J.G.; Kim, K.N. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications. J. Nanosci. Nanotechnol., 2014, 14(10), 7847-7854.
[101]
Cooper, R.J.; Spitzer, N. Silver nanoparticles at sublethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult neural stem cells. Neurotoxicology, 2015, 48, 231-238.
[102]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloid Surf. B Biointerf, 2016, 139, 17-24.
[103]
Cakić, M.; Glišić, S.; Nikolić, G.; Nikolić, G.M.; Cakić, K.; Cvetinov, M. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J. Mol. Struct., 2016, 1110, 156-161.
[104]
Rajeshkumar, S.; Malarkodi, C.; Vanaja, M.; Annadurai, G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct., 2016, 1116, 165-173.
[105]
Geethalakshmi, R.; Sarada, D.V.L. Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Ind. Crops Prod., 2013, 51, 107-115.
[106]
Kanipandian, N.; Thirumurugan, R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind. Crops Prod., 2014, 55, 1-10.
[107]
Prucek, R.; Tuček, J.; Kilianová, M.; Panáček, A.; Kvítek, L.; Filip, J.; Kolář, M.; Tománková, K.; Zbořil, R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials, 2011, 32(21), 4704-4713.
[108]
Li, C.; Wang, X.; Chen, F.; Zhang, C.; Zhi, X.; Wang, K.; Cui, D. The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials, 2013, 34(15), 3882-3890.
[109]
Wani, I.A.; Ahmad, T. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloid Surf. B Biointerf, 2013, 101, 162-170.
[110]
Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275.
[111]
Hameed, A.S.H.; Karthikeyan, C.; Kumar, V.S.; Kumaresan, S.; Sasikumar, S. Effect of Mg 2+, Ca 2+, Sr 2+ and Ba 2+ metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Mater. Sci. Eng. C, 2015, 52, 171-177.
[112]
Netala, V.R.; Kotakadi, V.S.; Domdi, L.; Gaddam, S.A.; Bobbu, P.; Venkata, S.K.; Ghosh, S.B.; Tartte, V. Biogenic silver nanoparticles: Efficient and effective antifungal agents. Appl. Nanosci., 2016, 6(4), 475-484.
[113]
Khan, S.; Alam, F.; Azam, A.; Khan, A.U. Gold nanoparticles enhance methylene blue-induced photodynamic therapy:A novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomed, 2012, 7, 3245-3257.
[114]
Paulo, C.S.; Vidal, M.; Ferreira, L.S. Antifungal nanoparticles and surfaces. Biomacromolecules., 2010, 11(10), 2810-2817.
[115]
Nasrollahi, A.; Pourshamsian, K.H.; Mansourkiaee, P. Antifungal activity of silver nanoparticles on some of fungi. Int. J. Nano Dimension., 2011, 1(3), 233-239.
[116]
MR K.P.; Umamaheswari, K.; Sharmili, A.; Rajendiran, N. Antifungal activity of silver nanoparticles synthesized using phenylalanine conjugated cholic acid salts & tyrosine conjugated cholic acid salts against candida species. Int. J. Innov. Res. Dev., 2014, 3(6), 244-248.
[117]
Karimiyan, A.; Najafzadeh, H.; Ghorbanpour, M.; Hekmati-Moghaddam, S.H. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J. Res. Med. Sci., 2015, 17(10), e2179.
[119]
Selvaraj, M.; Pandurangan, P.; Ramasami, N.; Rajendran, S.B.; Sangilimuthu, S.N.; Perumal, P. Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Appl. Biochem. Biotechnol., 2014, 173(1), 55-66.
[120]
Abdehgah, I.B.; Khodav, A.; Shamsazar, A.; Negahdary, M.; Jafarzadeh, M.; Rahimi, G. In vitro antifungal effects of biosynthesized silver nanoparticle by Candida albicans against Candida glabrata. Biomed. Res., 2017, 28(7), 2870-2876.
[121]
Seddighi, N.S.; Salari, S.; Izadi, A.R. Evaluation of antifungal effect of iron-oxide nanoparticles against different Candida species. IET Nanobiotechnol., 2017, 11(7), 883-888.
[122]
Khatoon, N.; Mishra, A.; Alam, H.; Manzoor, N.; Sardar, M. Biosynthesis, characterization, and antifungal activity of the silver nanoparticles against pathogenic Candida species. Bio. Nano. Sci., 2015, 5(2), 65-74.
[123]
Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol, 2015, 13(1), 91-93.
[124]
Ashour, S.M. Silver nanoparticles as antimicrobial agent from Kluyveromyces marxianus and Candida utilis. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(8), 384-396.
[125]
Qasim, M.; Singh, B.R.; Naqvi, A.H.; Paik, P.; Das, D. Silver nanoparticles embedded mesoporous SiO2 nanosphere: An effective anticandidal agent against Candida albicans 077. Nanotechnology, 2015, 26(28), 285102.
[126]
Samrat, K.; Nikhil, N.S.; Namasivamyam, S.K.R.; Sharath, R.; Chandraprabha, M.N.; Harish, B.G.; Muktha, H.; Kashyap, R.G. Evaluation of improved antifungal activity of fluconazole-silver nanoconjugate against pathogenic fungi. Materials Today: Proceed., 2016, 3(6), 1958-1967.
[127]
Mohanty, B.; Majumdar, D.K.; Mishra, S.K.; Panda, A.K.; Patnaik, S. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm. Dev. Technol., 2015, 20(4), 458-464.
[128]
Jain, S.; Jain, S.; Khare, P.; Gulbake, A.; Bansal, D.; Jain, S.K. Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv., 2010, 17(6), 443-451.
[129]
Italia, J.L.; Sharp, A.; Carter, K.C.; Warn, P.; Kumar, M.R. Peroral amphotericin B polymer nanoparticles lead to comparable or superior in vivo antifungal activity to that of intravenous Ambisome® or Fungizone™. PLoS One, 2011, 6(10), e25744.
[130]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.