Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Evaluation of Surface-modified Superparamagnetic Iron Oxide Nanoparticles to Optimize Bacterial Immobilization for Bio-separation with the Least Inhibitory Effect on Microorganism Activity

Author(s): Mehdi Khoshneviszadeh, Sarah Zargarnezhad, Younes Ghasemi and Ahmad Gholami*

Volume 10, Issue 2, 2020

Page: [166 - 174] Pages: 9

DOI: 10.2174/2210681208666181015120346

Price: $65

Abstract

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency.

Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION.

Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs.

Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.

Keywords: SPION, bioseparation, magnetic cell immobilization, surface modification, lipo-amino acid, industrial microbiology, biotechnology.

Graphical Abstract

[1]
Ahamed, M.A.; Alhadlaq, H.; Alam, J.; Khan, M.; Ali, D.; Alarafi, S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr. Pharm. Des., 2013, 19, 6681-6690.
[2]
Gholami, A.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Abootalebi, N.; Niroumand, U.; Ebrahimi, N.; Ghasemi, Y. Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnol., 2016, 28, 177-186.
[3]
Huang, K.; Yang, S.Y.; Horng, H.E.; Chieh, J.J. Time-evolution contrast of target MRI using high-stability antibody functionalized magnetic nanoparticles: An animal model. J. Nanomater., 2014, 2014, 1.
[4]
Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol., 2017, 43, 493-507.
[5]
Gholami, A.; Rasoul-amini, S.; Ebrahiminezhad, A.; Seradj, S.H.; Ghasemi, Y. Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). J. Nanomater., 2015, 16, 150.
[6]
Mukhopadhyay, A.; Joshi, N.; Chattopadhyay, K.; De, G. A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. ACS Appl. Mater. Interfaces, 2011, 4, 142-149.
[7]
Chifiriuc, M.C.; Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Cotar, A.I.; Grumezescu, V.; Bezirtzoglou, E.; Lazar, V.; Radulescu, R. Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe, 2013, 22, 14-19.
[8]
Sathyanarayanan, M.B.; Balachandranath, R.; Srinivasulu, G.Y.; Kannaiyan, S.K.; Subbiahdoss, G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol., 2013, 2013, 1-5.
[9]
Subbiahdoss, G.; Sharifi, S.; Grijpma, D.W.; Laurent, S.; van der Mei, H.C.; Mahmoudi, M.; Busscher, H.J. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater., 2012, 8, 2047-2055.
[10]
Raee, M.J.; Ebrahiminezhad, A.; Gholami, A.; Ghoshoon, M.B.; Ghasemi, Y. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: An effective way to intensify downstream process. Sep. Sci. Technol., 2018, 53, 1397-1404.
[11]
Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf. B Biointerfaces, 2013, 102, 534-539.
[12]
Gholami, A.; Ghoshoon, M-B.; Ghafari, P.; Ghasemi, Y. The effect of different positively charged silver nanoparticles against bacteria, fungi and mammalian cell line. Trends Pharmacol. Sci., 2017, 3, 135-142.
[13]
Shen, X-C.; Fang, X-Z.; Zhou, Y-H.; Liang, H. Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles. Chem. Lett., 2004, 33, 1468-1469.
[14]
Gotovtsev, P.; Yuzbasheva, E.Y.; Gorin, K.V.; Butylin, V.V.; Badranova, G.U.; Perkovskaya, N.I.; Mostova, E.B.; Namsaraev, Z.B.; Rudneva, N.I.; Komova, A.V.; Vasilov, R.G.; Sineokii, S.P. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. Appl. Biochem. Microbiol., 2015, 51, 792-803.
[15]
Ansari, F.; Grigoriev, P.; Libor, S.; Tothill, I.E.; Ramsden, J.J. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol. Bioeng., 2009, 102, 1505-1512.
[16]
Mohkam, M.; Rasoul-Amini, S.; Shokri, D.; Berenjian, A. Characterization and in vitro probiotic assessment of potential indigenous Bacillus strains isolated from soil rhizosphere. Minerva Biotechnol., 2016, 28, 19-28.
[17]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: A comparative study. Int. J. Nanomedicine, 2012, 7, 6003.
[18]
An, H.M.; Park, S.Y.; Lee, D.K.; Kim, J.R.; Cha, M.K.; Lee, S.W.; Lim, H.T.; Kim, K.J.; Ha, N.J. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis., 2011, 10, 116.
[19]
Shameli, K.; Ahmad, M.B.; Jazayeri, S.D.; Sedaghat, S.; Shabanzadeh, P.; Jahangirian, H.; Mahdavi, M.; Abdollahi, Y. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci., 2012, 13, 6639-6650.
[20]
Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 53, 286-297.
[21]
Scott, J.R.; Barnett, T.C. Surface proteins of gram-positive bacteria and how they get there. Annu. Rev. Microbiol., 2006, 60, 397-423.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy