[1]
Gingras, A.C.; Gstaiger, M.; Raught, B.; Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol., 2007, 8, 645-654.
[2]
Salazar, C.; Höfer, T. Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions. FEBS J., 2007, 274, 1046-1061.
[3]
Petsalaki, E.; Stark, A.; García-Urdiales, E.; Russell, R.B. Accurate prediction of peptide binding sites on protein surfaces. PLOS Comput. Biol., 2009, 5, e1000335.
[4]
Neduva, V.; Russell, R.B. Peptides mediating interaction networks: New leads at last. Curr. Opin. Biotechnol., 2006, 17, 465-471.
[5]
Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19, 344-350.
[6]
Rubinstein, M.; Niv, M.Y. Peptidic modulators of protein-protein interactions: Progress and challenges in computational design. Biopolymers, 2009, 91, 505-513.
[7]
Corbi-Verge, C.; Kim, P.M. Motif mediated protein-protein interactions as drug targets. Cell Commun. Signal., 2016, 14, 8.
[8]
Chen, T.S.; Petrey, D.; Garzon, J.I.; Honig, B. Predicting peptide-mediated interactions on a genome-wide scale. PLOS Comput. Biol., 2015, 11, e1004248.
[9]
Vanhee, P.; Van Der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends Biotechnol., 2011, 29, 231-239.
[10]
Audie, J.; Swanson, J. Advances in the prediction of protein-peptide binding affinities: Implications for peptide-based drug discovery. Chem. Biol. Drug Des., 2013, 81, 50-60.
[11]
Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20, 1985-1996.
[12]
Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol. Inform., 2012, 31, 114-122.
[13]
Zhang, C.; Liu, S.; Zhu, Q.; Zhou, Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J. Med. Chem., 2005, 48, 2325-2335.
[14]
Reimand, J.; Hui, S.; Jain, S.; Law, B.; Bader, G.D. Domain-mediated protein interaction prediction: From genome to network. FEBS Lett., 2012, 586, 2751-2763.
[15]
Pierce, M.M.; Raman, C.S.; Nall, B.T. Isothermal titration calorimetry of protein-protein interactions. Methods, 1999, 19, 213-221.
[16]
Yu, H.; Zhou, P.; Deng, M.; Shang, Z. Indirect readout in protein-peptide recognition: A different story from classical biomolecular recognition. J. Chem. Inf. Model., 2014, 54, 2022-2032.
[17]
Moerke, N.J. Fluorescence Polarization (FP) assays for monitoring peptide-protein or nucleic acid-protein binding. Curr. Protoc. Chem. Biol., 2009, 1, 1-15.
[18]
Spiga, O.; Bernini, A.; Scarselli, M.; Ciutti, A.; Bracci, L.; Lozzi, L.; Lelli, B.; Di Maro, D.; Calamandrei, D.; Niccolai, N. Peptide-protein interactions studied by surface plasmon and nuclear magnetic resonances. FEBS Lett., 2002, 511, 33-35.
[19]
Köhler, C.; Recht, R.; Quinternet, M.; De Lamotte, F.; Delsuc, M.A.; Kieffer, B. Accurate protein-peptide titration experiments by nuclear magnetic resonance using low-volume samples. Methods Mol. Biol., 2015, 1286, 279-296.
[20]
Weng, Z.; Zhao, Q. Utilizing ELISA to monitor protein-protein interaction. Methods Mol. Biol., 2015, 1278, 341-352.
[21]
Rossi, G.; Real-Fernández, F.; Panza, F.; Barbetti, F.; Pratesi, F.; Rovero, P.; Migliorini, P. Biosensor analysis of anti-citrullinated protein/peptide antibody affinity. Anal. Biochem., 2014, 465, 96-101.
[22]
Alexopoulos, E.C. Introduction to multivariate regression analysis. Hippokratia, 2010, 14(Suppl. 1), 23-28.
[23]
Wold, S.; Sjöströma, M.; Erikssonb, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 2001, 58, 109-130.
[24]
Wesolowski, M.; Suchacz, B. Artificial neural networks: Theoretical background and pharmaceutical applications: A review. J. AOAC Int., 2012, 95, 652-668.
[25]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20, 273-297.
[26]
Breiman, L. Random forests. Mach. Learn., 2001, 45, 5-32.
[27]
Rasmussen, C.E.; Williams, C.K.I. Gaussian processes for machine learning; MIT Press, 2006.
[28]
Collantes, E.R.; Dunn, W.J. Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogues. J. Med. Chem., 1995, 38, 2705-2713.
[29]
Mei, H.; Liao, Z.H.; Zhou, Y.; Li, S.Z. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers, 2005, 80, 775-786.
[30]
Doytchinova, I.A.; Walshe, V.; Borrow, P.; Flower, D.R. Towards the chemometric dissection of peptide - HLA-A*0201 binding affinity: comparison of local and global QSAR models. J. Comput. Aided Mol. Des., 2005, 19, 203-212.
[31]
Wold, S.; Jonsson, J.; Sjörström, M.; Sandberg, M.; Rännar, S. DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures. Anal. Chim. Acta, 1993, 277, 239-253.
[32]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28, 235-242.
[33]
Vanhee, P.; Reumers, J.; Stricher, F.; Baeten, L.; Serrano, L.; Schymkowitz, J.; Rousseau, F.; Pep, X. A structural database of non-redundant protein-peptide complexes. Nucleic Acids Res., 2010, 38, D545-D5451.
[34]
Zhou, Y.; Ni, Z.; Chen, K.; Liu, H.; Chen, L.; Lian, C.; Yan, L. Modeling protein-peptide recognition based on classical quantitative structure-affinity relationship approach: Implication for proteome-wide inference of peptide-mediated interactions. Protein J., 2013, 32, 568-578.
[35]
Han, K.; Wu, G.; Lv, F. Development of QSAR-improved statistical potential for the structure-based analysis of protein-peptide binding affinities. Mol. Inform., 2013, 32, 783-792.
[36]
Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun., 1995, 91, 275-282.
[37]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57, 4977-5010.
[38]
Chen, D.; Liu, S.; Zhang, W.; Sun, L. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification. J. Pept. Sci., 2015, 21, 826-832.
[39]
Fang, Y.; Jin, R.; Gao, Y.; Gao, J.; Wang, J. Design of p53-derived peptides with cytotoxicity on breast cancer. Amino Acids, 2014, 46, 2015-2024.
[40]
Wu, D.; Gu, Q.; Zhao, N.; Xia, F.; Li, Z. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis. J. Drug Target., 2015, 23, 936-942.
[41]
Zhuo, Z.H.; Sun, Y.Z.; Jin, P.N.; Li, F.Y.; Zhang, Y.L.; Wang, H.L. Selective targeting of MAPK family kinases JNK over p38 by rationally designed peptides as potential therapeutics for neurological disorders and epilepsy. Mol. Biosyst., 2016, 12, 2532-2540.
[42]
Gulukota, K.; DeLisi, C. HLA allele selection for designing peptide vaccines. Genet. Anal., 1996, 13, 81-86.
[43]
Blythe, M.J.; Doytchinova, I.A.; Flower, D.R. JenPep: A database of quantitative functional peptide data for immunology. Bioinformatics, 2002, 18, 434-439.
[44]
Free, S.M.; Wilson, J.W. A mathematical contribution to structure-activity studies. J. Med. Chem., 1964, 7, 395-399.
[45]
Doytchinova, I.A.; Blythe, M.J.; Flower, D.R. Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class I molecule HLA-A*0201. J. Proteome Res., 2002, 1, 263-272.
[46]
Doytchinova, I.A.; Walshe, V.A.; Jones, N.A.; Gloster, S.E.; Borrow, P.; Flower, D.R. Coupling in silico and in vitro analysis of peptide-MHC binding: A bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. J. Immunol., 2004, 172, 7495-7502.
[47]
Doytchinova, I.A.; Flower, D.R. Toward the quantitative prediction of T-cell epitopes: CoMFA and CoMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J. Med. Chem., 2001, 44, 3572-3581.
[48]
Doytchinova, I.A.; Flower, D.R. Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: A three-dimensional quantitative structure-activity relationship study. Proteins, 2002, 48, 505-518.
[49]
Peters, B.; Sidney, J.; Bourne, P.; Bui, H.H.; Buus, S.; Doh, G.; Fleri, W.; Kronenberg, M.; Kubo, R.; Lund, O.; Nemazee, D.; Ponomarenko, J.V.; Sathiamurthy, M.; Schoenberger, S.; Stewart, S.; Surko, P.; Way, S.; Wilson, S.; Sette, A. The immune epitope database and analysis resource: From vision to blueprint. PLoS Biol., 2005, 3, e91.
[50]
Toseland, C.P.; Clayton, D.J.; McSparron, H.; Hemsley, S.L.; Blythe, M.J.; Paine, K.; Doytchinova, I.A.; Guan, P.; Hattotuwagama, C.K.; Flower, D.R. AntiJen: A quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res., 2005, 1, 4.
[51]
Rammensee, H.; Bachmann, J.; Emmerich, N.P.; Bachor, O.A.; Stevanović, S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics, 1999, 50, 213-219.
[52]
Ren, Y.; Chen, X.; Feng, M.; Wang, Q.; Zhou, P. Gaussian process: A promising approach for the modeling and prediction of peptide binding affinity to MHC proteins. Protein Pept. Lett., 2011, 18, 670-678.
[53]
Ren, Y.; Wu, B.; Pan, Y.; Lv, F.; Kong, X.; Luo, X.; Li, Y.; Yang, Q. Characterization of the binding profile of peptide to Transporter Associated with Antigen Processing (TAP) using Gaussian process regression. Comput. Biol. Med., 2011, 41, 865-870.
[54]
Zhang, G.L.; Ansari, H.R.; Bradley, P.; Cawley, G.C.; Hertz, T.; Hu, X.; Jojic, N.; Kim, Y.; Kohlbacher, O.; Lund, O.; Lundegaard, C.; Magaret, C.A.; Nielsen, M.; Papadopoulos, H.; Raghava, G.P.; Tal, V.S.; Xue, L.C.; Yanover, C.; Zhu, S.; Rock, M.T.; Crowe, J.E.; Panayiotou, C.; Polycarpou, M.M.; Duch, W.; Brusic, V. Machine learning competition in immunology - prediction of HLA class I binding peptides. J. Immunol. Methods, 2011, 374, 1-4.
[55]
Yordanov, V.; Dimitrov, I.; Doytchinova, I. Proteochemometrics for the prediction of binding to the MHC proteins. Lett. Drug Des. Discov., 2017, 14, 2-9.
[57]
Luo, H.; Ye, H.; Ng, H.W.; Shi, L.; Tong, W.; Mendrick, D.L.; Hong, H. Machine learning methods for predicting HLA-peptide binding activity. Bioinform. Biol. Insights, 2015, 9(Suppl. 3), 21-29.
[58]
Söllner, J. Computational peptide vaccinology. Methods Mol. Biol., 2015, 1268, 291-312.
[59]
Li, S.S. Specificity and versatility of SH3 and other proline-recognition domains: Structural basis and implications for cellular signal transduction. Biochem. J., 2005, 390, 641-653.
[60]
Feng, S.; Chen, J.K.; Yu, H.; Simon, J.A.; Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: Development of a general model for SH3-ligand interactions. Science, 1994, 266, 1241-1247.
[61]
Landgraf, C.; Panni, S.; Montecchi-Palazzi, L.; Castagnoli, L.; Schneider-Mergener, J.; Volkmer-Engert, R.; Cesareni, G. Protein interaction networks by proteome peptide scanning. PLoS Biol., 2004, 2, e14.
[62]
Hou, T.; Zhang, W.; Case, D.A.; Wang, W. Characterization of domain-peptide interaction interface: A case study on the amphiphysin-1 SH3 domain. J. Mol. Biol., 2008, 376, 1201-1214.
[63]
Hou, T.; Xu, Z.; Zhang, W.; McLaughlin, W.A.; Case, D.A.; Xu, Y.; Wang, W. Characterization of domain-peptide interaction interface: A generic structure-based model to decipher the binding specificity of SH3 domains. Mol. Cell. Proteomics, 2009, 8, 639-649.
[64]
Hou, T.; Li, N.; Li, Y.; Wang, W. Characterization of domain-peptide interaction interface: Prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J. Proteome Res., 2012, 11, 2982-2995.
[65]
Cai, J.; Ou, R.; Xu, Y.S.; Yang, L.; Lin, Z.; Shu, M. Modeling and predicting interactions between the human amphiphysin SH3 domains and their peptide ligands based on amino acid information. J. Pept. Sci., 2010, 16, 627-632.
[66]
Liu, L.; He, D.; Yang, S.; Xu, Y. Applying chemometrics approaches to model and predict the binding affinities between the human amphiphysin SH3 domain and its peptide ligands. Protein Pept. Lett., 2010, 17, 246-253.
[67]
Wu, G.; Zhang, Z.L.; Fu, C.J.; Lv, F.L.; Tian, F.F. Proteome-wide inference of human endophilin 1-binding peptides. Protein Pept. Lett., 2012, 19, 1094-1102.
[68]
Fu, C.; Wu, G.; Lv, F.; Tian, F. Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis. J. Mol. Model., 2012, 18, 2153-2161.
[69]
Zhou, P.; Tian, F.; Wu, Y.; Li, L.; Shang, Z. Quantitative Sequence-activity Model (QSAM): applying QSAR strategy to model and predict bioactivity and function of peptides, proteins and nucleic acids. Curr. Comput. Aided Drug Des., 2008, 4, 311-321.
[70]
Zhou, P.; Tian, F.; Chen, X.; Shang, Z. Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic Algorithm-Gaussian processes. Biopolymers, 2008, 90, 792-802.
[71]
Hou, T.; McLaughlin, W.; Lu, B.; Chen, K.; Wang, W. Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J. Proteome Res., 2006, 5, 32-43.
[72]
He, P.; Wu, W.; Yang, K.; Jing, T.; Liao, K.L.; Zhang, W.; Wang, H.D.; Hua, X. Exploring the activity space of peptides binding to diverse SH3 domains using principal property descriptors derived from amino acid rotamers. Biopolymers, 2011, 96, 288-301.
[73]
He, P.; Wu, W.; Wang, H.D.; Yang, K.; Liao, K.L.; Zhang, W. Toward quantitative characterization of the binding profile between the human amphiphysin-1 SH3 domain and its peptide ligands. Amino Acids, 2010, 38, 1209-1218.
[74]
Ivanciuc, O. Machine learning Quantitative Structure-activity Relationships (QSAR) for peptides binding to the human amphiphysin-1 SH3 domain. Curr. Proteomics, 2009, 6, 289-302.
[75]
Lee, H.J.; Zheng, J.J. PDZ domains and their binding partners: Structure, specificity, and modification. Cell Commun. Signal., 2010, 8, 8.
[76]
Jin, R.; Ma, Y.; Qin, L.; Ni, Z. Structure-based prediction of domain-peptide binding affinity by dissecting residue interaction profile at complex interface: A case study on CAL PDZ domain. Protein Pept. Lett., 2013, 20, 1018-1028.
[77]
Zhang, L.; Shao, C.; Zheng, D.; Gao, Y. An integrated machine learning system to computationally screen protein databases for protein binding peptide ligands. Mol. Cell. Proteomics, 2006, 5, 1224-1232.
[78]
Wiedemann, U.; Boisguerin, P.; Leben, R.; Leitner, D.; Krause, G.; Moelling, K.; Volkmer-Engert, R.; Oschkinat, H. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides. J. Mol. Biol., 2004, 343, 703-718.
[79]
Vincentelli, R.; Luck, K.; Poirson, J.; Polanowska, J.; Abdat, J.; Blémont, M.; Turchetto, J.; Iv, F.; Ricquier, K.; Straub, M.L.; Forster, A.; Cassonnet, P.; Borg, J.P.; Jacob, Y.; Masson, M.; Nominé, Y.; Reboul, J.; Wolff, N.; Charbonnier, S.; Travé, G. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nat. Methods, 2015, 12, 787-793.
[80]
Jones, R.B.; Gordus, A.; Krall, J.A.; MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 2006, 439, 168-174.
[81]
Wunderlich, Z.; Mirny, L.A. Using genome-wide measurements for computational prediction of SH2-peptide interactions. Nucleic Acids Res., 2009, 37, 4629-4641.
[82]
Panni, S.; Montecchi-Palazzi, L.; Kiemer, L.; Cabibbo, A.; Paoluzi, S.; Santonico, E.; Landgraf, C.; Volkmer-Engert, R.; Bachi, A.; Castagnoli, L.; Cesareni, G. Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens. Proteomics, 2011, 11, 128-143.
[83]
Ren, Y.; Chen, S.; Zou, X.; Tian, F.; Zhou, P. Use of Gaussian process to model and predict domain-peptide recognition and interaction. Sci. Sin. Chim., 2012, 42, 1179-1189.
[84]
Tian, F.; Tan, R.; Guo, T.; Zhou, P.; Yang, L. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems, 2013, 113, 40-49.
[85]
Hilpert, K.; Winkler, D.F.; Hancock, R.E. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat. Protoc., 2007, 2, 1333-1349.
[86]
Harndahl, M.; Rasmussen, M.; Roder, G.; Pedersen, D.I.; Sørensen, M.; Nielsen, M.; Buus, S. Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur. J. Immunol., 2012, 42, 1405-1416.