[1]
Tans, S.J.; Verschueren, A.R.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393(6680), 49-52.
[2]
Martel, R.; Schmidt, T.; Shea, H.R.; Hertel, T.; Avouris, P. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 1998, 73(17), 2447-2449.
[3]
Avouris, Z.; Chen, V.; Perebeino, V. Carbon-based electronics. Nat. Nanotechnol., 2007, 2, 605-615.
[4]
Perri, A.G.; Marani, R. CNTFET Electronics: Design Principles; Progedit: Bari, Italy, 2017.
[5]
Gelao, G.; Marani, R.; Diana, R.; Perri, A.G. A semi-empirical SPICE model for n-type conventional CNTFETs. IEEE Trans. NanoTechnol., 2011, 10, 506-512.
[6]
Marani, R.; Perri, A.G. A compact, semi-empirical model of carbon nanotube field effect transistors oriented to simulation software. Curr. Nanosci., 2011, 7, 245-253.
[7]
Marani, R.; Perri, A.G. A DC model of carbon nanotube field effect transistor for CAD applications. Int. J. Electron., 2012, 99, 427-444.
[8]
Marani, R.; Gelao, G.; Perri, A.G. Comparison of ABM SPICE library with Verilog-A for compact CNTFET model implementation. Curr. Nanosci., 2012, 8, 556-565.
[9]
Marani, R.; Gelao, G.; Perri, A.G. Modelling of carbon nanotube field effect transistors oriented to SPICE software for A/D circuit design. Microelectronics J., 2013, 44, 33-39.
[10]
Marani, R.; Perri, A.G. Analysis of CNTFETs operating in SubThreshold region for low power digital applications. ECS J. Solid State Sci. Technol., 2016, 5, M1-M4.
[11]
Marani, R.; Perri, A.G. A de-embedding procedure to determine the equivalent circuit parameters of RF CNTFETs. ECS J. Solid State Sci. Technol., 2016, 5, M31-M34.
[12]
Raychowdhury, A.; Mukhopadhyay, S.; Roy, K. A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., 2004, 23(10), 1411-1420.
[13]
Prégaldiny, F.; Lallement, C.; Kammerer, J.B. Design-oriented compact models for CNTFETs. International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006, pp. 34-39.
[14]
Prégaldiny, F.; Lallement, C.; Diange, B.; Sallese, M.; Krummenacher, M. Compact Modeling of Emerging Technologies with VHDL-AMS. In Huss, S.A. (ed).Advances in Design and Specification Languages for Embedded Systems; Dordrecht: Springer Netherlands, 2007.
[15]
Gelao, G.; Marani, R.; Pizzulli, L.; Perri, A.G. A model to improve analysis of CNTFET logic gates in Verilog-A-Part I: Static analysis. Curr. Nanosci., 2015, 11, 515-526.
[16]
Gelao, G.; Marani, R.; Pizzulli, L.; Perri, A.G. A model to improve analysis of CNTFET logic gates in Verilog-A-Part II: Dynamic analysis. Curr. Nanosci., 2015, 11, 770-783.
[17]
Marani, R.; Perri, A.G. A simulation study of analogue and logic circuits with CNTFETs. ECS J. Solid State Sci. Technol., 2016, 5, M38-M43.
[18]
Gelao, G.; Marani, R.; Perri, A.G. A comparison of temperature dependence of I-V characteristics in CNTFETs models. Curr. Nanomater., 2016, 1, 61-68.
[19]
Marani, R.; Perri, A.G. A DC thermal model of carbon nanotube field effect transistors for CAD applications. ECS J. Solid State Sci. Technol., 2016, 5, M3001-M3004.
[20]
Marani, R.; Perri, A.G. Effects of temperature dependence of energy band gap on I-V characteristics in CNTFETs models. Int. J. Nanosci., 2017, 161750009
[21]
Verilog-AMS language reference manual Version 2.2,
2014.
[22]
Lee, C-S.; Pop, E.; Franklin, A.D.; Haensch, W.; Wong, H-S.P. A compact virtual-source model for carbon nanotube field-effect transistors in the sub-10-nm regime-Part I: Intrinsic elements. IEEE Trans. Electron Dev., 2015, 62, 3061-3069.
[23]
Lee, C-S.; Pop, E.; Franklin, A.D.; Haensch, W.; Wong, H-S.P. A compact virtual-source model for carbon nanotube field-effect transistors in the sub-10-nm regime-Part II: Extrinsic elements, performance assessment, and design optimization. IEEE Trans. Electron Dev., 2015, 62, 3070-3079.
[24]
Deng, J.; Wong, H-S.P. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. IEEE Trans. Electron Dev., 2007, 54, 3186-3194.
[25]
Deng, J.; Wong, H-S.P. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking. IEEE Trans. Electron Dev., 2007, 54, 3195-3205.
[26]
Gelao, G.; Marani, R.; Perri, A.G. Effects of temperature in CNTFET-based design of analog circuits. ECS J. Solid State Sci. Technol., 2018, 7(2), M16-M21.
[27]
Gelao, G.; Marani, R.; Perri, A.G. Effects of temperature in CNTFET-based design of digital circuits. ECS J. Solid State Sci. Technol., 2018, 7(3), M41-M48.
[28]
Gelao, G.; Marani, R.; Perri, A.G. Effects of temperature on switching time and power dissipation of CNTFET-based digital circuits. ECS J. Solid State Sci. Technol., 2018, 7(5), M63-M68.
[29]
Datta, S. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering 3. Electronic Transport in Mesoscopic Systems; New York: Cambridge University Press, 1995.
[30]
Allen, P.E.; Holberg, D.R. CMOS Analog Circuit Design; Oxford University Press, 2013.
[31]
Kashti, V.V.; Monica, R. Performance analysis of CMOS comparator and CNTFET comparator design. Int. J. Res. Eng. Technol., 2014, 3(4), 862-866.
[32]
Perri, A.G. Fondamenti di Elettronica; Progedit: Bari, Italy, 2009.
[33]
Van der Ziel, A. Noise in Solid State Devices and CircuitsEd. Wiley, New York; , 1986.
[34]
Navid, R.; Jungemann, C.; Lee, T.H.; Dutton, R.W. High-frequency noise in nanoscale metal oxide semiconductor field effect transistors. J. Appl. Phys., 2007, 101, 124501-124509.
[35]
Betti, A.; Fiori, G.; Iannaccone, G. Shot noise suppression in quasi-one-dimensional field-effect transistors. IEEE Trans. Electron Dev., 2009, 56(9), 2137-2143.
[36]
Landauer, G.M.; Gonzalez, J.L. A compact noise model for carbon nanotube FETs. Proceedings of 2012 International Semiconductor Conference Dresden-Grenoble (ISCDG), 2012, pp. 53-56.
[37]
Huszka, Z.; Chakravorty, A. Correlated noise in bipolar transistors: Model implementation issues. Solid-State Electron., 2015, 114, 69-75.
[38]
Marani, R.; Gelao, G.; Perri, A.G. A compact noise model for C-CNTFETs. ECS J. Solid State Sci. Technol., 2017, 6(4), M44-M49.