Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

The Inhibitory Effect of Three Essential Oils on Candida rugosa Lipase: In Vitro and In Silico Studies

Author(s): Talia Serseg*, Khedidja Benarous and Mohamed Yousfi

Volume 10, Issue 3, 2020

Page: [208 - 215] Pages: 8

DOI: 10.2174/2210315508666181009112415

Price: $65

Abstract

Background: Essential oils have been used for centuries. EOs are gaining increasing interest because of their acceptance by consumers and their safe status. For the first time, the effect of essential oils on the inhibition of lipases has been investigated in this work.

Objective: We aimed in this study to investigate in vitro the inhibitory effects of the three essential oils of most used spices: Peppermint (Mentha piperita L.), cinnamon (Cinnamomum zeylanicum L.) and Cloves (Syzygium aromaticum L. Merr. et Perry) against Candida rugose lipase. In silico studies using molecular docking have been achieved to study the inhibition mechanism of major compounds of EO: menthol, carvacrol, eugenol and cinnamylaldehyde toward CRL.

Methods: The inhibitory effect of three essential oils were determined by candida rugosa enzyme and pNP-L as substrate using spectrophotometry. Autodock vina was used for molecular docking with 50 runs.

Results: We have found that these essential oils have a strong inhibitory effect with IC50 values 1.09, 1.78 and 1.13 mg/ml compared with Orlistat 0.06 mg/ml. The results show competitive inhibition for the three major compounds Menthol, Carvacrol and Eugenol with uncompetitive inhibition for Cinnamaldehyde. Different repetition ratios of hydrogen bonds and hydrophobic interactions were observed. The saved interactions were with His449, Ser209, Gly123, Gly124 and Phe344 for all molecules.

Conclusion: These observations support using and considering essential oils and their major compounds as good sources for design new drugs to treat candidiasis and other diseases related to Lipases.

Keywords: In silico, inhibition activity, Candida rugosa lipase, molecular docking, essential oils, lipase.

Graphical Abstract

[1]
Neffati, A.; Bouhlel, I.; Sghaier, M.B.; Boubaker, J.; Limem, I.; Kilani, S.; Skandrani, I.; Bhouri, W.; Le Dauphin, J.; Barillier, D. Antigenotoxic and antioxidant activities of Pituranthos chloranthus essential oils. Environ. Toxicol. Pharmacol., 2009, 27(2), 187-194.
[2]
Işcan, G.; Kirimer, N.; Kürkcüoğlu, M.; Başer, H.C; DEMIrci, F. Antimicrobial screening of Mentha piperita essential oils. J. Agricult. Food Chem., 2002, 50(14), 3943-3946.
[3]
Sharma, N.; Sharma, V.K.; Seo, S.Y. Screening of some medicinal plants for anti-lipase activity. J. Ethnopharmacol., 2005, 97(3), 453-456.
[4]
Lee, K.G.; Shibamoto, T. Antioxidant property of aroma extract isolated from clove buds Syzygium aromaticum (L.) Merr. et Perry. Food Chem., 2001, 74(4), 443-448.
[5]
Ramezani, M.; Khaje-Karamoddin, M.; Karimi-Fard, V. Chemical composition and anti–helicobacter pylori activity of the essential oil of Pistacia vera. Pharm. Biol., 2004, 42(7), 488-490.
[6]
Saifudin, A.; Kadota, S.; Tezuka, Y. Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. J. Nat. Med., 2013, 67(2), 264-270.
[7]
Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Comp. Med., 2017, 7(2), 234-244.
[8]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res., 2006, 20, 619-633.
[9]
Marjani, A.; Rahmati, R.; Mansourian, A.R.; Veghary, G. Effect of peppermint oil on serum lipid peroxidation and hepatic enzymes after immobility stress in mice. Open Biochem. J., 2012, 6, 51.
[10]
Patkar, K.L.; Usha, C.M.; Shetty, H.S.; Paster, N.; Lacey, J. Effect of spice essential oils on growth and aflatoxin B1 production by Aspergillus flavus. Lett. Appl. Microbiol., 1993, 17(2), 49-51.
[11]
Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol., 2009, 58(11), 1454-1462.
[12]
Elshafie, H.S.; Sakr, S.; Mang, S.M.; Belviso, S.; De Feo, V.; Camele, I. Antimicrobial activity and chemical composition of three essential oils extracted from Mediterranean aromatic plants. J. Med. Food, 2016, 19(11), 1096-1103.
[13]
Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry, 2006, 67(12), 1249-1255.
[14]
Chalannavar, R.K.; Venugopala, K.N.; Baijnath, H.; Odhav, B. The chemical composition of leaf essential oils of Psidium guajava L. (white and pink fruit forms) from South Africa. J. Essent. Oil Bearing Plants, 2014, 17(6), 1293-1302.
[15]
Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem., 2004, 52(9), 2485-2489.
[16]
Marwa, C.; Fikri-Benbrahim, K.; Ou-Yahia, D.; Farah, A. African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil. J. Adv. Pharm. Technol. Res., 2017, 8(3), 86.
[17]
Mainasara, M.M.; Bakar, M.F.A.; Waziri, A.H.; Musa, A.R. Comparison of phytochemical, proximate and mineral composition of fresh and dried Peppermint (Mentha piperita) leaves. J. Sci. Technol., 2018, 10(2)
[18]
Rizwani, G.H.; Abbas, K.; Zahid, H. Prevention and treatment of different health problems by common people’s diet (Haleem). Afr. J. Food Sci., 2017, 11(4), 82-94.
[19]
Afridi, M.S.; Ali, J.; Abbas, S.; Rehman, S.U.; Khan, F.A.; Khan, M.A.; Shahid, M. Essential oil composition of Mentha piperita L. and its antimicrobial effects against common human pathogenic bacterial and fungal strains. Pharmacol Online, 2016, 3, 90-97.
[20]
Ranasinghe, L.; Jayawardena, B.; Abeywickrama, K. Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M. Perry against crown rot and anthracnose pathogens isolated from banana. Lett. Appl. Microbiol., 2002, 35(3), 208-2011.
[21]
Scalas, D.; Mandras, N.; Roana, J.; Sgorbini, B.; Marra, E.; Rubiolo, P.; Cuffini, A.; Tullio, V. Evaluation of the antifungal activity of mentha of pancalieri (Turin, Italy) essential oil and synergistic interaction with azoles. In: 45° Congresso nazionale della Società Italiana di Microbiologia; , 2017; pp. 140-140.
[22]
Bhatt, N. Cinnamon as a Cancer Therapeutic Agent. In: Bioactive Components, Diet and Medical Treatment in Cancer Prevention; Springer: Cham, 2018; pp. 63-73.
[23]
Ravindran, P.N.; Nirmal-Babu, K.; Shylaja, M. Cinnamon and Cassia: The genus cinnamomum, Med. Aromat. Plants - Industrial Profiles; CRC Press: Boca Rotan, Florida, 2003.
[24]
Barceloux, D.G. Cinnamon (Cinnamomum species). Disease-amonth DM, 2009, 55(6), 327.
[25]
Pratibha, S.S.Y.; Bhandari, U.; Naik, G. Antioxidant properties and phytochemical screening of commercial cinnamon bark. Eur. J. Biomed., 2018, 5(2), 964-970.
[26]
Wang, R.; Yang, B. Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innov. Food Sci. Emerg. Technol., 2009, 10(2), 289-292.
[27]
Ammar, S.S.M.; Mokhtaria, K.; Amar, A.A.; Tahar, B.B.; Moulay, D.; Mohamed, H.S.; Laid, B. Chemical composition and antibacterial activity of Cinnamomum aromaticum essential oil against four enteropathogenic bacteria associated with neonatal calve’s diarrhea. Asian J. Anim. Vet. Adv., 2017, 12, 24-30.
[28]
Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed., 2014, 4(2), 90-96.
[29]
Sebaaly, C.; Charcosset, C.; Stainmesse, S.; Fessi, H.; Greige-Gerges, H. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor. Carbohydr. Polym., 2016, 138, 75-85.
[30]
Dwivedi, V.; Shrivastava, R.; Hussain, S.; Ganguly, C.; Bharadwaj, M. Comparative anticancer potential of clove (Syzygium aromaticum)--an Indian spice--against cancer cell lines of various anatomical origin. Asian Pac. J. Cancer Prev., 2011, 12(8), 1989-1993.
[31]
Casas-Godoy, L.; Gasteazoro, F.; Duquesne, S.; Bordes, F.; Marty, A.; Sandoval, G. Lipases: An overview. In: Lipases and Phospholipases; Humana Press: New York, NY, 2018; pp. 3-38.
[32]
Derewenda, Z.S. Adventures in cooperativity. Postepy Biochem., 2016, 62(3), 286-297.
[33]
Sandoval, G. Lipases and phospholipases; Springer: New York, 2018.
[34]
Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol., 2004, 64(6), 763-781.
[35]
Serseg, T.; Benarous, K. The inhibitory effect of some drugs on Candida rugosa lipase and human pancreatic lipase: In: vitro and In silico studies. Endocrine, Metab. Immune Disord.-Drug Targ.(Formerly Curr. Drug Targ.-Immune, Endocrine & Metab. Disord.); , 2018; 18, pp. (6)602-609.
[http://dx.doi.org/10.2174/1871530318666180319093342] [PMID: 29557755]
[36]
Benarous, K.; Bombarda, I.; Iriepa, I.; Moraleda, I.; Gaetan, H.; Linani, A.; Tahri, D.; Sebaa, M.; Yousfi, M. Harmaline and hispidin from Peganum harmala and Inonotus hispidus with binding affinity to Candida rugosa lipase: In silico and in vitro studies. Bioorg. Chem., 2015, 62, 1-7.
[37]
Nebeg, H.; Benarous, K.; Serseg, T.; Lazreg, A.; Hassani, H.; Yousfi, M. Seeds, leaves and roots of Thapsia garganica as a source of new potent lipases inhibitors In vitro and In silico studies.Endocrine, Metab. Immune Disord.-Drug Targ. (Formerly Curr. Drug Targ.-Immune, Endocrine Metab. Disord.), 2019, 19(5), 683-696.
[http://dx.doi.org/10.2174/1871530319666190128122211] [PMID: 30706829]
[38]
Calabrone, L.; Larocca, M.; Marzocco, S.; Martelli, G.; Rossano, R. Total phenols and flavonoids content, antioxidant capacity and lipase inhibition of root and leaf horseradish (Armoracia rusticana) Extracts. Food Nutr. Sci., 2015, 6(1), 64.
[39]
Kim, S. PubChem Substance and compound databases. Nucleic Acids Res., 2016, 44, 1202-1213.
[http://dx.doi.org/10.1093/nar/gkv951]
[40]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[41]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[42]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[43]
D.S, Biovia Discovery Studio Modeling Environment, Release 2017, San Diego. 2016.
[44]
Serseg, T.; Benarous, K.; Lamrani, M.; Yousfi, M. Lepidine B from Lepidium Sativum seeds as multi-functional anti-Alzheimer's disease agent: In vitro and in silico studies. Curr. Comp.-aided Drug Design, 2020, 16(1)
[http://dx.doi.org/10.2174/1573409916666200302120305] [PMID: 32116197]
[45]
Afifi, F.U.; Kasabri, V.; Beltran, S.; Abuhammad, A.; Abaza, I.F.; Ganado, O.; Al-Gabbiesh, A.H. Comparison of different methods in determination of essential oil composition of Origanum syriacum L. from Jordan and its modulation of pancreatic enzymes. Rev. Roum. Chim., 2017, 62(1), 15-21.
[46]
Sellami, M.; Louati, H.; Kamoun, J.; Kchaou, A.; Damak, M.; Gargouri, Y. Inhibition of pancreatic lipase and amylase by extracts of different spices and plants. Int. J. Food Sci. Nutr., 2017, 68(3), 313-320.
[47]
Slanc, P.; Doljak, B.; Kreft, S.; Lunder, M.; Janeš, D.; Štrukelj, B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytother. Res., 2009, 23(6), 874-877.
[48]
Moss-Pierce, T.; Tu, Z.; Jiang, A. Nutrition - Obesity: Carbohydrate intake and weight management:In Vitro digestive enzyme inhibitory effects of eight common spices and herbs. FASEB, 2013, 27(1), 1066.3..
[49]
Charles, D.J.; Joly, R.J.; Simon, J.E. Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry, 1990, 29(9), 2837-2840.
[50]
Rohloff, J. Monoterpene composition of essential oil from peppermint (Mentha x piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food Chem., 1999, 47(9), 3782-3786.
[51]
Mallavarapu, G.R.; Ramesh, S.; Chandrasekhara, R.S.; Rajeswara Rao, B.R.; Kaul, P.N.; Bhattacharya, A.K. Investigation of the essential oil of cinnamon leaf grown at Bangalore and Hyderabad. Flavour Fragrance J., 1995, 10(4), 239-242.
[52]
Baratta, M.T.; Dorman, H.D.; Deans, S.G.; Figueiredo, A.C.; Barroso, J.G.; Ruberto, G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragrance J., 1998, 13(4), 235-244.
[53]
Gende, L.B.; Floris, I.; Fritz, R.; Eguaras, M.J. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bull. Insectol., 2008, 61(1), 1.
[54]
Tung, Y.T.; Chua, M.T.; Wang, S.Y.; Chang, S.T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour. Technol., 2008, 99(9), 3908-3913.
[55]
Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem., 2010, 122(1), 161-166.
[56]
Samadi, A.; de los Ríos, C.; Bolea, I.; Chioua, M.; Iriepa, I.; Moraleda, I.; Bartolini, M.; Andrisano, V.; Gálvez, E.; Valderas, C.; Unzeta, M.; Marco-Contelles, J. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur. J. Med. Chem., 2012, 52, 251-262.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.022] [PMID: 22503231]
[57]
Schrodinger, L.L.C. The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.7 2015.
[58]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy