[1]
Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mater., 2005, 77(1), 1-45.
[2]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27), 10834-10843.
[3]
Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Japan., 1990, 63(4), 988-992.
[4]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397), 710-712.
[5]
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev., 1997, 97(6), 2373-2420.
[6]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[7]
Srinivasu, P.; Alam, S.; Balasubramanian, V.V.; Velmathi, S.; Sawant, D.P.; Böhlmann, W.; Mirajkar, S.P.; Ariga, K.; Halligudi, S.B.; Vinu, A. Novel three dimensional cubic Fm3m mesoporous aluminosilicates with tailored cage type pore structure and high aluminum content. Adv. Funct. Mater., 2008, 18(4), 640-651.
[8]
Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor Mater., 2005, 77(1), 1-45.
[9]
Huo, Q.; Margolese, D.I.; Ciesla, U.; Demuth, D.G.; Feng, P.; Gier, T.E.; Sieger, P.; Firouzi, A.; Chmelka, B.F. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater., 1994, 6(8), 1176-1191.
[10]
Deka, J.R.; Lin, Y.H.; Kao, H.M. Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal. RSC Adv, 2014, 4(90), 49061-49069.
[11]
Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc., 2008, 130(1), 28-29.
[12]
Kleitz, F.; Liu, D.; Anilkumar, G.M.; Park, I.S.; Solovyov, L.A.; Shmakov, A.N.; Ryoo, R. Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure. J. Phys. Chem. B, 2003, 107(51), 14296-14300.
[13]
Fan, J.; Yu, C.; Lei, J.; Zhang, Q.; Li, T.; Tu, B.; Zhou, W.; Zhao, D. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc., 2005, 127(31), 10794-10795.
[14]
Melero, J.A.; van Grieken, R.; Morales, G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chem. Rev., 2006, 106(9), 3790-3812.
[15]
Stein, A.; Melde, B.J.; Schroden, R.C. Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mat., 2000, 12(19), 1403-1419.
[16]
Sayari, A.; Hamoudi, S. Periodic Mesoporous Silica-Based Organic− Inorganic Nanocomposite Materials. Chem. Mat., 2001, 13(10), 3151-3168.
[17]
Hsu, Y.T.; Chen, W.L.; Yang, C.M. Co-condensation synthesis of aminopropyl-functionalized KIT-5 mesophases using carboxy-terminated triblock copolymer. J. Phys. Chem. C, 2009, 113(7), 2777-2783.
[18]
Agirrezabal-Telleria, I.; Gandarias, I.; Arias, P.L. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal. Today, 2014, 234, 42-58.
[19]
Gu, Y.; Karam, A.; Jérôme, F.; Barrault, J. Selectivity enhancement of silica-supported sulfonic acid catalysts in water by coating of ionic liquid. Org. Lett., 2007, 9(16), 3145-3148.
[20]
de AA Soler-Illia G.J.; Crepaldi, E.L.; Grosso, D.; Sanchez, C. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci., 2003, 8(1), 109-126.
[21]
Chang, W.C.; Deka, J.R.; Wu, H.Y.; Shieh, F.K.; Huang, S.Y.; Kao, H.M. Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl. Catal. B Environ, 2013, 142, 817-827.
[22]
Bamoharram, F.F.; Heravi, M.M.; Roshani, M.; Jahangir, M.; Gharib, A. Effective direct esterification of butanol by eco-friendly Preyssler catalyst, [NaP5W30O110]14−. J. Mol. Catal.A: Chem., 2007, 271(1), 126-130.
[23]
Heravi, M.M.; Rajabzadeh, G.; Bamoharram, F.F.; Seifi, N. An eco-friendly catalytic route for synthesis of 4-amino-pyrazolo [3, 4-d]pyrimidine derivatives by Keggin heteropolyacids under classical heating and microwave irradiation. J. Mol. Catalysis A: Chem., 2006, 256(1), 238-241.
[24]
Heravi, M.M.; Bakhtiari, K.; Fatehi, A.; Bamoharram, F.F. A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid. Catal. Commun., 2008, 9(2), 289-292.
[25]
Heravi, M.M.; Khorasani, M.; Derikvand, F.; Oskooie, H.A.; Bamoharram, F.F. Highly efficient synthesis of coumarin derivatives in the presence of H 14 [NaP 5 W 30 O 110] as a green and reusable catalyst. Catal. Commun., 2007, 8(12), 1886-1890.
[26]
Heravi, M.M.; Zadsirjan, V.; Bakhtiari, K.; Oskooie, H.A.; Bamoharram, F.F. Green and reusable heteropolyacid catalyzed oxidation of benzylic, allylic and aliphatic alcohols to carbonyl compounds. Catal. Commun., 2007, 8(3), 315-318.
[27]
Sadjadi, S.; Heravi, M.M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liquids., 2017, 231, 98-105.
[28]
Sadjadi, S.; Heravi, M.M.; Daraie, M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes. Res. Chem. Intermed., 2017, 43(2), 843-857.
[29]
Sadjadi, S.; Heravi, M.M.; Daraie, M. Heteropolyacid supported on amine-functionalized halloysite nano clay as an efficient catalyst for the synthesis of pyrazolopyranopyrimidines via four-component domino reaction. Res. Chem. Intermed., 2017, 43(4), 2201-2214.
[30]
Kleitz, F.; Choi, S.H.; Ryoo, R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. , 2003, (17), 2136-2137.
[31]
O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat. Prod. Rep., 2000, 17(5), 435-446.
[32]
Abdelhamid, A.O.; Abdelall, E.K.; Zaki, Y.H. Reactions with hydrazonoyl halides 62: Synthesis and antimicrobial evaluation of some new imidazo[1,2‐a]pyrimidine, imidazo[1,2‐a]pyridine, imdazo[1,2‐b]pyrazole, and quinoxaline derivatives. J. Heterocycl. Chem., 2010, 47(2), 477-482.
[33]
Shaabani, A.; Seyyedhamzeh, M.; Ganji, N.; Ng, S.W. Catalyst-free rapid synthesis of benzo[4,5]imidazo[1,2-a]-pyrimidine-3-carboxamides via four-component coupling in one pot. J. Iran Chem. Soc., 2014, 11(2), 481-487.
[34]
Sadjadi, S.; Heravi, M.M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liquids., 2017, 231, 98-105.
[35]
Abignente, E. Etudes d’imidazo [1,2-a] pyridines et d’analogues douées d’activité anti-inflammatoire. Actualités de Chimie Thérapeutique, 1991, 18, 193-214.
[36]
Heravi, M.M.; Derikvand, F.; Ranjbar, L. Sulfamic acid–catalyzed, three-component, one-pot synthesis of [1,2,4] triazolo/benzimidazolo quinazolinone derivatives. Synth. Commun., 2010, 40(5), 677-685.
[37]
Amoozadeh, A.; Rahmani, S. Nano-WO3-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst. J. Mol. Catal. A: Chem., 2015, 396, 96.
[38]
Heravi, M.M.; Saeedi, M.; Beheshtiha, Y.S.; Oskooie, H.A. One-pot chemoselective synthesis of novel fused pyrimidine derivatives. Chem. Heterocycl. Comp., 2011, 47(6), 737.
[38]
Sadjadi, S.; Nahavandi, F.; Heravi, M. Efficient synthesis of novel imidazo[1,2-a]pyrimidine derivatives via one-pot three-component procedure. J. Iran Chem. Soc., 2015, 12(6), 1049-1052.