[1]
Liu Z, Wang Y, Gao T, et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res 2014; 42(Database issue): D531-6.
[2]
Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell Proteomics, 2011, 10(12), M111.012658.
[3]
Qian L, Nie L, Chen M, et al. Global profiling of protein lysine malonylation in Escherichia coli reveals its role in energy metabolism. J Proteome Res 2016; 15(6): 2060-71.
[4]
Xu Y, Ding YX, Ding J, Wu LY, Xue Y. Mal-Lys: Prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection. Sci Rep 2016; 6: 38318.
[5]
Xiang Q, Feng K, Liao B, Liu Y, Huang G. Prediction of lysine malonylation sites based on pseudo amino acid compositions. Comb Chem High Throughput Screen 2017; 20(7): 622-8.
[6]
Wang LN, Shi SP, Xu HD, Wen PP, Qiu JD. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy. Bioinformatics 2017; 33(10): 1457-63.
[7]
Xu Y, Chou KC. Recent progress in predicting posttranslational modification sites in proteins. Curr Top Med Chem 2016; 16(6): 591-603.
[8]
Shien DM, Lee TY, Chang WC, et al. Incorporating structural characteristics for identification of protein methylation sites. J Comput Chem 2009; 30(9): 1532-43.
[9]
Xu HD, Shi SP, Wen PP, Qiu JD. SuccFind: A novel succinylation sites online prediction tool via enhanced characteristic strategy. Bioinformatics 2015; 31(23): 3748-50.
[10]
Lee TY, Hsu JB, Lin FM, Chang WC, Hsu PC, Huang HD. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites. J Comput Chem 2010; 31(15): 2759-71.
[11]
Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 1999; 10(3): 61-74.
[12]
Zhao Q, Xie Y, Zheng Y, et al. GPS-SUMO: A tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res., 2014, 42(Web Server issue), W325-W330.
[13]
Wang XB, Wu LY, Wang YC, Deng NY. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel 2009; 22(11): 707-12.
[14]
Xu Y, Ding J, Wu LY, Chou KC. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013; 8(2): e55844.
[15]
Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 2008; 36(Database issue): D202-5.
[16]
Zhao X, Dai J, Ning Q, Ma Z, Yin M, Sun P. Position-specific analysis and prediction of protein pupylation sites based on multiple features. BioMed Res Int 2013; 2013: 109549.
[17]
Huang SY, Shi SP, Qiu JD, Liu MC. Using support vector machines to identify protein phosphorylation sites in viruses. J Mol Graph Model 2014; 56C: 84-90.
[18]
Dou Y, Yao B, Zhang C. PhosphoSVM: Prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine. Amino Acids 2014; 46(6): 1459-69.
[19]
Citak-Er F, Vural M, Acar O, Esen T, Onay A, Ozturk-Isik E. Final gleason score prediction using discriminant analysis and support vector machine based on preoperative multiparametric MR imaging of prostate cancer at 3T. BioMed Res Int 2014; 2014: 690787.
[20]
Chang WC, Lee TY, Shien DM, et al. Incorporating support vector machine for identifying protein tyrosine sulfation sites. J Comput Chem 2009; 30(15): 2526-37.
[21]
Chang CC, Lin CJ. LIBSVM: A library for support vector machines. Acm Trans Intellig Sys Tech 2011; 2(3): 1-27.
[22]
Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 2008; 7(9): 1598-608.
[23]
Liu LM, Xu Y, Chou KC. iPGK-PseAAC: Identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med Chem 2017; 13(6): 552-9.
[24]
Wen PP, Shi SP, Xu HD, Wang LN, Qiu JD. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics 2016; 32(20): 3107-15.
[25]
Jia J, Liu Z, Xiao X, Liu B, Chou KC. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 2016; 394: 223-30.
[26]
Li F, Li C, Wang M, et al. GlycoMine: A machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 2015; 31(9): 1411-9.
[27]
Gribskov M, Robinson NL. Use of Receiver Operating Characteristic (ROC) analysis to evaluate sequence matching. Comput Chem 1996; 20(1): 25-33.
[28]
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res 2004; 14(6): 1188-90.
[29]
Vacic V, Iakoucheva LM, Radivojac P. Two sample logo: A graphical representation of the differences between two sets of sequence alignments. Bioinformatics 2006; 22(12): 1536-7.