[1]
Conti, M.; Richter, W.; Mehats, C.; Livera, G.; Park, J.; Jin, C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem., 2003, 278, 5493-5496.
[2]
Baumer, W.; Hoppmann, J.; Rundfeldt, C.; Kietzmann, M. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm. Allergy Drug Targets, 2007, 6, 17-26.
[3]
Souness, J.E.; Aldous, D.; Sargent, C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology, 2000, 47, 127-162.
[4]
Castro, A.; Jerez, M.J.; Gil, C.; Martinez, A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: Advances in the development of specific phosphodiesterase inhibitors. Med. Res. Rev., 2005, 25, 229-244.
[5]
Tasken, K.; Aandahl, E.M. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev., 2004, 84, 137-167.
[6]
Giembycz, M.A. Development status of second generation PDE4 inhibitors for asthma and COPD: The story so far. Monaldi Arch. Chest Dis., 2002, 57, 48-64.
[7]
Caron, S.; Vazquez, E. The synthesis of a selective PDE4/TNFα inhibitor. Org. Process Res. Dev., 2001, 5, 587-592.
[8]
Felding, J.; Soerensen, M.D.; Poulsen, T.D.; Larsen, J.; Andersson, C.; Refer, P.; Engell, K.; Ladefoged, L.G.; Thormann, T.; Vinggaard, A.M.; Hegardt, P.; Soehoel, A.; Nielsen, S.F. Discovery and early clinical development of 2-6-[2-(3,5-dichloro-4-pyridyl)acetyl]-2,3-dimethoxyphenoxy-N-propylacetamide (LEO 29102), a soft-drug inhibitor of phosphodiesterase 4 for topical treatment of atopic dermatitis. J. Med. Chem., 2014, 57, 5893-5903.
[9]
Press, N.J.; Banner, K.H. PDE4 inhibitors - A review of the current field. Prog. Med. Chem., 2009, 47, 37-74.
[10]
Burnouf, C.; Pruniaux, M.P. Recent advances in PDE4 inhibitors as immunoregulators and anti-inflammatory drugs. Curr. Pharm. Des., 2002, 8, 1255-1296.
[11]
Sanz, M.J.; Cortijo, J.; Morcillo, E.J. PDE4 inhibitors as new anti-inflammatory drugs: Effects on cell trafficking and cell adhesion molecules expression. Pharmacol. Ther., 2005, 106, 269-297.
[12]
Kodimuthali, A.; Jabaris, S.S.L.; Pal, M. Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. J. Med. Chem., 2008, 18, 5471-5489.
[13]
Beghè, B.; Rabe, F.; Fabbri, L.M. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am. J. Respir. Crit. Care Med., 2013, 188, 271-278.
[14]
Man, H.W.; Schafer, P.; Wong, L.M.; Patterson, R.T.; Corral, L.G.; Raymon, H.; Blease, K.; Leisten, J.; Shirley, M.A.; Tang, Y.; Babusis, D.M.; Chen, R.; Stirling, D.; Muller, G.W. Discovery of (S)-N-[2-[1-(3-ethoxy-4-methoxyphenyl)-2-methanesulfonylethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl] acetamide (apremilast), a potent and orally active phosphodiesterase 4 and tumor necrosis factor-alpha inhibitor. J. Med. Chem., 2009, 52, 1522-1524.
[15]
Guariento, S.; Karawajczyk, A.; Bull, J.A.; Marchini, G.; Bielska, M.; Iwanowa, X.; Bruno, O.; Fossa, P.; Giordanetto, F. Design and synthesis of 4,5,6,7-tetrahydro-1H-1,2-diazepin-7-one derivatives as a new series of phosphodiesterase 4 (PDE4) inhibitors. Bioorg. Med. Chem. Lett., 2017, 27, 24-29.
[16]
Grewal, A.S.; Lather, V.; Pandita, D.; Dalal, R. Synthesis, docking and anti-inflammatory activity of triazole amine derivatives as potential phosphodiesterase-4 inhibitors. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(1), 58-67.
[17]
Grewal, A.S.; Kumar, P.; Dua, J.S.; Lather, V. Synthesis, docking and anti-inflammatory activity of some newer triazole derivatives as potential PDE7 inhibitors. J. Med. Chem. Toxicol., 2017, 2(2), 55-61.
[18]
Gil, C.; Campillo, N.E.; Perez, D.I.; Martinez, A. PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin. Ther. Pat., 2008, 18, 1127-1139.
[19]
Redondo, M.; Brea, J.; Perez, D.I.; Soteras, I.; Val, C.; Perez, C.; Morales-García, J.A.; Alonso-Gil, S.; Paul-Fernandez, N.; Martin-Alvarez, R.; Cadavid, M.I.; Loza, M.I.; Perez-Castillo, A.; Mengod, G.; Campillo, N.E.; Martinez, A.; Gil, C. Effect of phosphodiesterase 7 (PDE7) inhibitors in experimental autoimmune encephalomyelitis mice. Discovery of a new chemically diverse family of compounds. J. Med. Chem., 2012, 55, 3274-3284.
[20]
Smith, S.J.; Cieslinski, L.B.; Newton, R.; Donnelly, L.E.; Fenwick, P.S.; Nicholson, A.G.; Barnes, P.J.; Barnette, M.S.; Giembycz, M.A. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: In vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol. Pharmacol., 2004, 66, 1679-1689.
[21]
Christensen, I.; Miskovicova, H.; Porvaznik, I.; Joskova, M.; Mokra, D.; Mokry, J. Selective inhibition of phosphodiesterase 7 (PDE7) by BRL50481 in healthy and ovalbumin-sensitized guinea pigs. Acta Medica Martiniana, 2012, 12, 16-23.
[22]
Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 2010, 59, 367-374.
[23]
Pitts, W.J.; Watson, A.J.; Dodd, J.H. Dual inhibitors of PDE 7 and PDE 4. W.O. Patent 2002088079, Jan 30, 2002.
[24]
Rudra, S.; Gupta, N.; Chandrakant, K.G.; Jain, T.; Voleti, S.R.; Ray, A.; Dastidar, S.G.; Vijaykrishnan, L. Phosphodiestarase inhibitors. U.S. Patent 20120004201, Jan 05, 2012.
[25]
Rudra, S.; Gupta, N.; Baregama, L.K.; Agarwal, R.; Khairnar, V.V.; Ramaiah, M.R.; Palle, V.P.; Balachandran, S.; Kondaskar, A.; Salla, M.; Ray, A.; Dastidar, S.G.; Vijaykrishnan, L. Pyrazolo (3, 4-B) pyridine derivatives as phosphodiesterase inhibitors. U.S. Patent 8420666, Nov 18, 2013.
[26]
Vávrová, K. Emerging small-molecule compounds for treatment of atopic dermatitis: A review. Expert Opin. Ther. Pat., 2016, 26(1), 21-34.
[27]
Levy, J.; Zhou, D.M.; Zippin, J.H. Cyclic adenosine monophosphate signaling in inflammatory skin disease. J. Clin. Exp. Dermatol. Res., 2016, 7(1), 1000326.
[28]
Hatzelmann, A.; Marx, D.; Steinhilber, W.; Sterk, G.J. Phthalazinones derivatives useful as PDE4/7 inhibitors. W.O. Patent 2002085906, Dec 19, 2002.
[29]
Pelcman, B.; Yee, J.G.; Mackenzie, L.F.; Zhou, Y.; Han, K. Isochromenones useful in the treatment of inflammation. W.O. Patent 2010076564, July 08, 2010.
[30]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: Advances in chemical and biological research. Curr. Med. Chem., 2017, 24, 673-700.
[31]
Nichols, P.J.; Demattei, J.A.; Barnett, B.R.; Lefur, N.A.; Chuang, T.H.; Piscopio, A.D.; Koch, K. Preparation of pyrrolidine-based PDE4 inhibitors via enantioselective conjugate addition of alpha-substituted malonates to aromatic nitroalkenes. Org. Lett., 2006, 8, 1495-1498.
[32]
Vergne, F.; Bernardelli, P.; Lorthiois, E.; Pham, N.; Proust, E.; Oliveira, C.; Mafroud, A.K.; Royer, F.; Wrigglesworth, R.; Schellhaas, J.; Barvian, M.; Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.; Berna, P.; Soulard, P. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 1: Design, synthesis and structure-activity relationship studies soulard, P. Bioorg. Med. Chem. Lett., 2004, 14, 4607-4613.
[33]
Vergne, F.; Bernardelli, P.; Lorthiois, E.; Pham, N.; Proust, E.; Oliveira, C.; Mafroud, A.K.; Ducrot, P.; Wrigglesworth, R.; Berlioz-Seux, F.; Coleon, F.; Chevalier, E.; Moreau, F.; Idrissi, M.; Tertre, A.; Descours, A.; Berna, P.; Li, M. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 Inhibitors. Part 2: Metabolism-directed optimization studies towards orally bioavailable derivatives. Bioorg. Med. Chem. Lett., 2004, 14, 4615-4621.
[34]
Tiwari, D.; Haque, S.; Mishra, S.; Chandra, R. Synthesis and pharmacological screening of N-substituted anthranilic acid derivatives. Int. J. Drug Develop. Res., 2011, 3(2), 265-271.
[35]
Mane, B.Y.; Vidyadhara, S. Synthesis and screening of anti-inflammatory activity of benzofuran derivatives bearing oxadiazole. Orient. J. Chem., 2011, 27(3), 1227-1231.
[36]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[37]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 16, 2785-2791.
[39]
Miteva, M.A.; Guyon, F.; Tufféry, P. Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res., 2010, 38, W622-627.
[40]
The PyMOL Molecular Graphics System, Version 1.7.4.5 Edu,
Schrödinger, LLC.
[41]
Grewal, A.S.; Lather, V.; Pandita, D.; Bhayana, G. Synthesis, docking and evaluation of phenylacetic acid and trifluoro-methylphenyl substituted benzamide derivatives as potential PPARδ agonists. Lett. Drug Des. Discov., 2017, 11, 1239-1251.
[42]
Singh, R.; Lather, V.; Pandita, D.; Judge, V.; Arumugam, K.N.; Grewal, A.S. Synthesis, docking and antidiabetic activity of some newer benzamide derivatives as potential glucokinase activators. Lett. Drug Des. Discov., 2017, 14, 540-553.
[43]
Lather, V.; Grewal, A.S.; Sharma, S.K.; Pandita, D. Synthesis, docking and evaluation of novel pyrazole carboxamide derivatives as multifunctional anti-Alzheimer’s agents. J. Med. Chem. Toxicol., 2017, 2, 47-54.