[1]
Hotez, P.J.; Dumonteil, E.; Betancourt-Cravioto, M.; Bottazzi, M.E.; Tapia-Conyer, R.; Meymandi, S. An unfolding tragedy of chagas disease in north america. PLoS Negl. Trop. Dis., 2013, 7(10)e2300
[2]
Herricks, J.R.; Hotez, P.J.; Wanga, V.; Coffeng, L.E.; Haagsma, J.A.; Basáñez, M-G.; Murray, C.J.L. The global burden of disease study 2013: What does it mean for the NTDs? PLoS Negl. Trop. Dis., 2017, 11(8)e0005424
[3]
Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas’ Disease in the United States. Clin. Microbiol. Rev., 2011, 24, 655-681.
[4]
Maccari, G.; Jaeger, T.; Moraca, F.; Biava, M.; Flohé, L.; Botta, M. A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase. Bioorg. Med. Chem. Lett., 2011, 21, 5255-5258.
[5]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19, 2128-2175.
[6]
Noya, B.A.; Díaz-Bello, Z.; Colmenares, C.; Ruiz-Guevara, R.; Mauriello, L.; Muñoz-Calderón, A. Update on oral Chagas disease outbreaks in Venezuela: Epidemiological, clinical and diagnostic approaches. Mem. Inst. Oswaldo Cruz, 2015, 110, 377-386.
[7]
Liu, Q.; Zhou, X.N. Preventing the transmission of American trypanosomiasis and its spread into non-endemic countries. Infect. Dis. Poverty, 2015, 4, 1-11.
[8]
Ferreira, A.M.; Sabino, E.C.; de Oliveira, L.C.; Oliveira, C.D.L.; Cardoso, C.S.; Ribeiro, A.L.P. Benznidazole use among patients with chronic chagas’ Cardiomyopathy in an endemic region of brazil. PLoS One, 2016, 11, 1-13.
[9]
Renslo, A.R.; McKerrow, J.H. Drug discovery and development for neglected parasitic diseases. Nat. Chem. Biol., 2006, 2, 701-710.
[10]
Pita, S.S.R.; Pascutti, P.G. Alvos terapêuticos na doença de chagas: A Tripanotiona redutase como foco. Revista Virtual de Química, 2011, 3, 307-324.
[11]
Jaeger, T.; Flohé, L. The thiol-based redox networks of pathogens: Unexploited targets in the search for new drugs. Biofactors, 2006, 27, 109-120.
[12]
Krauth-Siegel, R.L.; Comini, M.A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta, 2008, 1780, 1236-1248.
[13]
Paulino, M.; Iribarne, F.; Dubin, M.; Aguilera-Morales, S.; Tapia, O.; Stoppani, A.O.M. The chemotherapy of chagas’ disease: An overview. Mini Rev. Med. Chem., 2005, 5, 499-519.
[14]
Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol., 1992, 46, 695-729.
[15]
Paixão, V.G.; Pita, S.S.R. Triagem virtual aplicada na busca de inibidores da tripanotiona redutase de trypanosoma cruzi utilizando a base de dados de produtos naturais do semiárido baiano (NatProDB). Revista Virtual de Química, 2016, 8, 1289-1310.
[16]
Krieger, S.; Schwarz, W.; Ariyanayagam, M.R.; Fairlamb, A.H.; Krauth-Siegel, R.L.; Clayton, C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol., 2000, 35(3), 542-552.
[17]
Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure, 1999, 7, 81-89.
[18]
Venkatesan, S.K.; Dubey, V.K. Footprinting of inhibitor interactions of in silico identified inhibitors of trypanothione reductase of leishmania parasite. ScientificWorldJournal, 2012, 2012963658
[19]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity - A rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[20]
Olsson, M.H.M.; Sondergaad, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 2011, 7, 525-537.
[21]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[22]
Goodford, P.G. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28, 849-847.
[23]
Valli, M.; Santos, R.N.; Figueira, L.D.; Nakajima, C.H.; Castro-Gamboa, I.; Andricopulo, A.D. Development of a natural products database from the biodiversity of brazil. J. Nat. Prod., 2013, 76, 439-444.
[25]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[26]
Rodrigues, P.R.; Mantoani, S.P.; de Almeida, J.R.; Pinsetta, F.R.; Semighini, E.P.; da Silva, V.B. Estratégias de triagem virtual no planejamento de fármacos. Revista Virtual de Química, 2012, 4, 739-776.
[27]
Sant’Anna, C.M.R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. Revista Virtual de Química, 2009, 1, 49-57.
[28]
Bouvier, G.; Evrard-Todeschi, N.; Girault, J.P.; Bertho, G. Automatic clustering of docking poses in virtual screening process using self-organizing map. Bioinformatics, 2010, 26, 53-60.
[29]
Mantsyzov, A.B.; Bouvier, G.; Evrard-Todeschi, N.; Bertho, G. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening. Adv. Appl. Bioinform. Chem., 2012, 5, 61-79.
[30]
Irwin, J.J.; Duan, D.; Torosyan, H.; Doak, A.K.; Ziebart, K.T.; Sterling, T. An aggregation advisor for ligand discovery. J. Med. Chem., 2015, 58, 7076-7087.
[31]
Braga, R.C.; Alves, V.M.; Silva, M.F.B.; Muratov, E.; Fourches, D.; Lião, L.M. Pred-hERG: A novel web-accessible computational tool for predicting cardiac toxicity. Mol. Inform., 2015, 34, 698-701.
[32]
Braga, R.C.; Alves, V.M.; Silva, M.F.B.; Muratov, E.; Fourches, D.; Tropsha, A. Tuning HERG out: Antitarget QSAR models for drug development. Curr. Top. Med. Chem., 2014, 14, 1399-1415.
[33]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58, 4066-4072.
[34]
Chan, C.; Yin, H.; Garforth, J.; McKie, J.H.; Jaouhari, R.; Speers, P. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J. Med. Chem., 1998, 41, 148-156.
[35]
Khan, M.O.; Austin, S.E.; Chan, C.; Yin, H.; Marks, D.; Vaghjiani, S.N. Use of an additional hydrophobic binding site, the z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J. Med. Chem., 2000, 43, 3148-3156.
[36]
Pita, S.S.R.; Batista, P.R.; Albuquerque, M.G.; Pascutti, P.G. Molecular dynamics simulations of peptide inhibitors complexed with trypanosoma cruzi trypanothione reductase. Chem. Biol. Drug Des., 2012, 80, 561-571.
[37]
Zhang, Y.; Bond, C.S.; Bailey, S.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Pro. Sci., 1996, 5, 52-61.
[38]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[39]
Kennedy, C.; Brewer, L.; Williams, D. Drug interactions. Clin. Pharmacol. Ther., 2016, 4, 422-426.
[40]
Thummel, K.E.; Wilkinson, G.R. In vitro and in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol., 1998, 38, 389-430.
[41]
Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res., 2016, 44(W1)W242-245
[43]
The PyMOL molecular graphics system, Version 2.1.0, 2013.