Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

General Review Article

Targeting PD-L1 Protein: Translation, Modification and Transport

Author(s): Ran Wei, Libin Guo, Qingshui Wang, Jin Miao, Hang Fai Kwok* and Yao Lin*

Volume 20, Issue 1, 2019

Page: [82 - 91] Pages: 10

DOI: 10.2174/1389203719666180928105632

Price: $65

Abstract

Programmed death ligand 1 (PD-L1) is a cell membrane protein that binds to programmed cell death protein 1 (PD-1) on the effector T cells and transduces immunosuppressive signals. It is now clear that the expression of the PD-L1 protein on the tumor cell surface is critical for tumor cells to escape immunosuppression. At present, more attention is focused on the transcriptional regulation of PDL1 mRNA. However, PD-L1 protein is the functional unit involved in immunotherapy response. It is essential to deeply understand how this membrane protein is regulated post-transcriptionally in tumors and immune cells. In this review, we summarize the recent progress on the translation, modification and transport of PD-L1 protein.

Keywords: Programmed death ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), immunotherapy, translation, modification, transport.

« Previous
Graphical Abstract

[1]
Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563.
[2]
Imamovic, D.; Vranic, S. Novel regulators of PD-L1 expression in cancer: CMTM6 and CMTM4—a new avenue to enhance the therapeutic benefits of immune checkpoint inhibitors. Ann. Transl. Med., 2017, 5(23), 467.
[3]
Jiao, S.; Xia, W.; Yamaguchi, H.; Wei, Y.; Chen, M.K.; Hsu, J.M.; Hsu, J.L.; Yu, W.H.; Du, Y.; Lee, H.H. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immuno-suppression. Clin. Cancer Res., 2017, 23(14), 3711-3720.
[4]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[5]
Deng, R. Bumbaca, D.; Pastuskovas, C.V.; Boswell, C.A.; West, D.; Cowan, K.J.; Chiu, H.; McBride, J.; Johnson, C.; Xin, Y. In Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor, MAbs, Taylor & Francis: , 2016, pp. 593-603.
[6]
Chen, J.; Jiang, C.; Jin, L.; Zhang, X. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol., 2015, 27(3), 409-416.
[7]
Horita, H.; Law, A.; Hong, S.; Middleton, K. Identifying regulatory posttranslational modifications of PD-L1: A focus on monoubiquitinaton. Neoplasia, 2017, 19(4), 346-353.
[8]
Li, C.W.; Lim, S.O.; Xia, W.; Lee, H.H.; Chan, L.C.; Kuo, C.W.; Khoo, K.H.; Chang, S.S.; Cha, J.H.; Kim, T. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun., 2016, 7, 12632.
[9]
Sun, C.; Mezzadra, R.; Schumacher, T.N. Regulation and function of the PD-L1 checkpoint. Immunity, 2018, 48(3), 434-452.
[10]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[11]
Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; Savage, K.J.; Hernberg, M.M.; Lebbe, C.; Charles, J.; Mihalcioiu, C.; Chiarion-Sileni, V.; Mauch, C.; Cognetti, F.; Arance, A.; Schmidt, H.; Schadendorf, D.; Gogas, H.; Lundgren-Eriksson, L.; Horak, C.; Sharkey, B.; Waxman, I.M.; Atkinson, V.; Ascierto, P.A. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med., 2015, 372(4), 320-330.
[12]
Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; Srinivas, S.; Retz, M.M.; Grivas, P.; Joseph, R.W.; Galsky, M.D.; Fleming, M.T.; Petrylak, D.P.; Perez-Gracia, J.L.; Burris, H.A.; Castellano, D.; Canil, C.; Bellmunt, J.; Bajorin, D.; Nickles, D.; Bourgon, R.; Frampton, G.M.; Cui, N.; Mariathasan, S.; Abidoye, O.; Fine, G.D.; Dreicer, R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016, 387(10031), 1909-1920.
[13]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhaufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crino, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[14]
Huang, Y.; Zhang, S.D.; McCrudden, C.; Chan, K.W.; Lin, Y.; Kwok, H.F. The prognostic significance of PD-L1 in bladder cancer. Oncol. Rep., 2015, 33(6), 3075-3084.
[15]
Wang, Q.; Lin, W.; Tang, X.; Li, S.; Guo, L.; Lin, Y.; Kwok, H.F. The roles of microRNAs in regulating the expression of PD-1/PD-L1 immune checkpoint. Int. J. Mol. Sci., 2017, 18(12), 2540.
[16]
Patel, S.P.; Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther., 2015, 14(4), 847-856.
[17]
Dang, T.O.; Ogunniyi, A.; Barbee, M.S.; Drilon, A. Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer. Expert Rev. Anticancer Ther., 2016, 16(1), 13-20.
[18]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[19]
Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H., Jr; Lao, C.D. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol., 2015, 16(4), 375-384.
[20]
Chae, Y.K.; Pan, A.; Davis, A.A.; Raparia, K.; Mohindra, N.A.; Matsangou, M.; Giles, F.J. Biomarkers for PD-1/PD-L1 blockade therapy in non–small-cell lung cancer: Is PD-L1 expression a good marker for patient selection? Clin. Lung Cancer, 2016, 17(5), 350-361.
[21]
Swaika, A.; Hammond, W.A.; Joseph, R.W. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol. Immunol., 2015, 67(2), 4-17.
[22]
Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med., 2007, 13(1), 84.
[23]
Dong, Z.Y.; Zhong, W.Z.; Zhang, X.C.; Su, J.; Xie, Z.; Liu, S.Y.; Tu, H.Y.; Chen, H.J.; Sun, Y.L.; Zhou, Q. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res., 2017, 23(12), 3012-3024.
[24]
Taube, J.M.; Anders, R.A.; Young, G.D.; Xu, H.; Sharma, R.; McMiller, T.L.; Chen, S.; Klein, A.P.; Pardoll, D.M.; Topalian, S.L. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl. Med., 2012, 4(127), 127ra37-127ra37.
[25]
Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; Van Der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016, 387(10031), 1909-1920.
[26]
Sznol, M.; Chen, L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin. Cancer Res., 2013, 19(19), 5542.
[27]
Lastwika, K.J.; Wilson, W.; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S. Control of PD-L1 expression by oncogenic activation of the AKT–mTOR pathway in non–small cell lung cancer. Cancer Res., 2016, 76(2), 227-238.
[28]
Vazquez, F.; Sellers, W.R. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim. Biophys. Acta, 2000, 1470(1), M21-M35.
[29]
Crane, C.; Panner, A.; Murray, J.; Wilson, S.; Xu, H.; Chen, L.; Simko, J.; Waldman, F.; Pieper, R.; Parsa, A. PI (3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene, 2009, 28(2), 306.
[30]
Gong, A.Y.; Zhou, R.; Hu, G.; Li, X.; Splinter, P.L.; O’Hara, S.P.; LaRusso, N.F.; Soukup, G.A.; Dong, H.; Chen, X.M. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-γ-induced B7-H1 expression in cholangiocytes. J. Immunol., 2009, 182(3), 1325-1333.
[31]
Yeh, J.C.; Hiraoka, N.; Petryniak, B.; Nakayama, J.; Ellies, L.G.; Rabuka, D.; Hindsgaul, O.; Marth, J.D.; Lowe, J.B.; Fukuda, M. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β1, 3-N-acetylglucosaminyltransferase. Cell, 2001, 105(7), 957-969.
[32]
Li, C.W.; Lim, S.O.; Chung, E.M.; Kim, Y.S.; Park, A.H.; Yao, J.; Cha, J.H.; Xia, W.; Chan, L.C.; Kim, T. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell, 2018, 33(2), 187-201.
[33]
Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X. Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature, 2018, 553(7686), 91.
[34]
Schaer, D.A.; Beckmann, R.P.; Dempsey, J.A.; Huber, L.; Forest, A.; Amaladas, N.; Li, Y.; Wang, Y.C.; Rasmussen, E.R.; Chin, D. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep, 2018, 22(11), 2978-2994.
[35]
Burr, M.L.; Sparbier, C.E.; Chan, Y.C.; Williamson, J.C.; Woods, K.; Beavis, P.A.; Lam, E.Y.; Henderson, M.A.; Bell, C.C.; Stolzenburg, S. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature, 2017, 549(7670), 101.
[36]
Mezzadra, R.; Sun, C.; Jae, L.T.; Gomez-Eerland, R.; de Vries, E.; Wu, W.; Logtenberg, M.E.; Slagter, M.; Rozeman, E.A.; Hofland, I. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature, 2017, 549(7670), 106.
[37]
Lim, S.O.; Li, C.W.; Xia, W.; Cha, J.H.; Chan, L.C.; Wu, Y.; Chang, S.S.; Lin, W.C.; Hsu, J.M.; Hsu, Y.H. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell, 2016, 30(6), 925-939.
[38]
Bech‐Otschir, D.; Kraft, R.; Huang, X.; Henklein, P.; Kapelari, B.; Pollmann, C.; Dubiel, W. COP9 signalosome‐specific phosphoryl-ation targets p53 to degradation by the ubiquitin system. EMBO J., 2001, 20(7), 1630-1639.
[39]
Welteke, V.; Eitelhuber, A.; Düwel, M.; Schweitzer, K.; Naumann, M.; Krappmann, D. COP9 signalosome controls the Carma1–Bcl10–Malt1 complex upon T‐cell stimulation. EMBO Rep., 2009, 10(6), 642-648.
[40]
Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12293-12297.
[41]
Caskey, M.; Lefebvre, F.; Filali-Mouhim, A.; Cameron, M.J.; Goulet, J.P.; Haddad, E.K.; Breton, G.; Trumpfheller, C.; Pollak, S.; Shimeliovich, I. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med., 2011, 208(12), 2357-2366.
[42]
Varthaman, A.; Moreau, H.D.; Maurin, M.; Benaroch, P. TLR3-induced maturation of murine dendritic cells regulates CTL responses by modulating PD-L1 trafficking. PLoS one, 2016, 11(12), e0167057.
[43]
Ghebeh, H.; Lehe, C.; Barhoush, E.; Al-Romaih, K.; Tulbah, A.; Al-Alwan, M.; Hendrayani, S.F.; Manogaran, P.; Alaiya, A.; Al-Tweigeri, T. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res., 2010, 12(4), R48.
[44]
Chen, J.; Feng, Y.; Lu, L.; Wang, H.; Dai, L.; Li, Y.; Zhang, P. Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology, 2012, 217(4), 385-393.
[45]
Durand, N.; Bastea, L.I.; Doppler, H.; Eiseler, T.; Storz, P. Src-mediated tyrosine phosphorylation of Protein Kinase D2 at focal adhesions regulates cell adhesion. Sci. Rep., 2017, 7, 9524.
[46]
Hausser, A.; Storz, P.; Martens, S.; Link, G.; Toker, A.; Pfizenmaier, K. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol., 2005, 7(9), 880-886.
[47]
Hsuan, J.J.; Minogue, S.; dos Santos, M. Phosphoinositide 4- and 5-kinases and the cellular roles of phosphatidylinositol 4,5-bisphosphate. Adv. Cancer Res., 1998, 74, 167-216.
[48]
Van Der Kraak, L.; Goel, G.; Ramanan, K.; Kaltenmeier, C.; Zhang, L.; Normolle, D.P.; Freeman, G.J.; Tang, D.; Nason, K.S.; Davison, J.M. 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. J. Immunother. Cancer, 2016, 4(1), 65.
[49]
Tran, L.; Allen, C.T.; Xiao, R.; Moore, E.; Davis, R.; Park, S.J.; Spielbauer, K.; Van Waes, C.; Schmitt, N.C. Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol. Res., 2017, 5(12), 1141-1151.
[50]
Qin, X.; Liu, C.; Zhou, Y.; Wang, G. Cisplatin induces programmed death-1-ligand 1 (PD-L1) over-expression in hepatoma H22 cells via Erk/MAPK signaling pathway. Cell. Mol. Biol., 2010, 56, OL1366-OL1372.
[51]
Jing, Y.; Wan-qin, H.; Xiao, X.; Jie, W.; Peng, K.; Li-hua, Y. The effect and its mechanism of cisplatin on the expression of PD-L1 in TC-1 cell surface. J. Kunming Med. Univ., 2015, 36(4), 4.
[52]
Liang, M.; Yang, H.; Fu, J. Nimesulide inhibits IFN-γ-induced programmed death-1-ligand 1 surface expression in breast cancer cells by COX-2 and PGE2 independent mechanisms. Cancer Lett., 2009, 276(1), 47-52.
[53]
Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 2010, 207(10), 2187-2194.
[54]
Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med., 2015, 372(4), 320-330.
[55]
Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.J.; Gangadhar, T.C. Anti-programmed-death-receptor-1 treatment with pembroli-zumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet, 2014, 384(9948), 1109-1117.
[56]
Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532.
[57]
Gettinger, S.N.; Shepherd, F.A.; Antonia, S.J.; Brahmer, J.R.; Chow, L.Q.M.; Juergens, R.A.; Borghaei, H.; Shen, Y.; Harbison, C.; Alaparthy, S. First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: Safety, efficacy, and correlation of outcomes with PD-L1 status. Am. Soc. Clin. Oncol, 2014, 4(3), 215-216.
[58]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[59]
Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1803-1813.
[60]
Ferris, R.L.; Blumenschein, Jr, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2016, 375(19), 1856-1867.
[61]
Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Matsumura, N.; Abiko, K.; Baba, T.; Yamaguchi, K.; Ueda, A. Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. Am. Soc. Clin. Oncol, 2014, 33(34), 4015-4022.
[62]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[63]
Food, U.; Administration, D. FDA grants nivolumab accelerated approval for MSI-H or dMMR colorectal cancer., 2017.
[64]
Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol., 2017, 18(9), 1182-1191.
[65]
El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, 3rd , T.H. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088), 2492-2502.
[66]
Garon, E.B.; Leighl, N.B.; Rizvi, N.A.; Blumenschein, G.R.; Balmanoukian, A.S.; Eder, J.P.; Goldman, J.W.; Hui, R.; Soria, J.C.; Gangadhar, T.C. Safety and clinical activity of MK-3475 in Previously Treated Patients (pts) with non-small cell lung cancer (NSCLC). Am. Soc. Clin. Oncol., 2014. San Diego, California.
[67]
Rizvi, N.A.; Garon, E.B.; Patnaik, A.; Gandhi, L.; Leighl, N.B.; Balmanoukian, A.S.; Goldman, J.W.; Eder, J.P.; Johnson, E.; Blumenschein, G.R. Safety and clinical activity of MK-3475 as initial therapy in patients with advanced non-small cell lung cancer (NSCLC). Am. Soc. Clin. Oncol., 2014. San Diego, California.
[68]
Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S. Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. N. Engl. J. Med., 2013, 369(2), 134-144.
[69]
Ribas, A.; Puzanov, I.; Dummer, R.; Schadendorf, D.; Hamid, O.; Robert, C.; Hodi, F.S.; Schachter, J.; Pavlick, A.C.; Lewis, K.D. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol., 2015, 16(8), 908-918.
[70]
Chow, L.; Burtness, B.; Weiss, J.; Berger, R.; Eder, J.; Gonzalez, E.; Pulini, J.; Johnson, J.; Dolled-Filhart, M.; Emancipator, K. LBA31A phase IB study of pembrolizumab (Pembro; MK-3475) in patients (PTS) with human papiilloma virus (HPV)-positive and negative head and neck cancer (HNC). Ann. Oncol., 2014, 25(suppl._4), 4.
[71]
Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med., 2017, 376(11), 1015-1026.
[72]
Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol., 2017, 18(11), 1483-1492.
[73]
Plimack, E.; Gupta, S.; Bellmunt, J.; Berger, R.; Montgomery, B.; Gonzalez, E.; Pulini, J.; Dolled-Filhart, M.; Emancipator, K.; Pathiraja, K. LBA23A Phase 1B study of pembrolizumab (pembro; mk-3475) in patients (pts) with advanced urothelial tract cancer. Ann. Oncol., 2014, 25(suppl._4), 4.
[74]
Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol., 2017, 35(19), 2125-2132.
[75]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[76]
Fuchs, C.S.; Doi, T.; Jang, R.W.J.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P. KEYNOTE-059 cohort 1: Efficacy and safety of pembrolizumab (pembro) monotherapy in patients with previously treated advanced gastric cancer. Am. Soc. Clin. Oncol., 2017. NCT02335411
[77]
Spigel, D.R.; Gettinger, S.N.; Horn, L.; Herbst, R.S.; Gandhi, L.; Gordon, M.S.; Cruz, C.; Conkling, P.; Cassier, P.A.; Antonia, S.J. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). Am. Soc. Clin. Oncol., 2013.
[78]
Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet, 2017, 389(10064), 67-76.
[79]
Herbst, R.S.; Gordon, M.S.; Fine, G.D.; Sosman, J.A.; Soria, J.C.; Hamid, O.; Powderly, J.D.; Burris, H.A.; Mokatrin, A.; Kowanetz, M. A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. Am. Soc. Clin. Oncol., 2013.
[80]
Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med., 2017, 377(20), 1919-1929.
[81]
Powles, T.; O’donnell, P.H.; Massard, C.; Arkenau, H.T.; Friedlander, T.W.; Hoimes, C.J.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: Updated results from a phase 1/2 open-label study. JAMA Oncol., 2017, 3(9), e172411.
[82]
Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.W.; Taylor, M. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): Pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol., 2018, 19(1), 51-64.
[83]
Kaufman, H.L.; Russell, J.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbé, C.; Linette, G.P.; Milella, M. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol., 2016, 17(10), 1374-1385.
[84]
Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat., 2018, 167(3), 671-686.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy