[1]
Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 2004, 32, 177.
[2]
Herrmann, J.M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53, 115-129.
[3]
Hajjaji, A.; Trabelsi, K.; Atyaoui, A.; Gaidi, M.; Bousselmi, L.; Bessais, B.; El Khakani, M.A. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films. Nanoscale Res. Lett., 2014, 9, 543.
[4]
Xu, F.Y.; Xiao, W.; Cheng, B.; Yu, J.G. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy, 2014, 39, 15394-15402.
[5]
Xiang, Q.J.; Cheng, B.; Yu, J.G. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed., 2015, 54, 2-19.
[6]
Xiang, Q.J.; Lang, D.; Shen, T.T.; Liu, F. Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl. Catal. B Environ, 2015, 162, 196-203.
[7]
Yang, X.; Qin, J.; Jiang, Y.; Li, R.; Li, Y.; Tang, H. Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Advances, 2014, 4(36), 18627-18636.
[8]
Yang, X.; Qin, J.; Jiang, Y.; Chen, K.; Yang, X.; Zhang, D.; Li, R.; Tang, H. Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl. Catal. B Environ, 2015, 166, 231-240.
[9]
Yang, X.; Qin, J.; Li, Y.; Zhang, R.; Tang, H. Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance. J. Hazard. Mater., 2013, 261, 342-350.
[10]
Tang, H.; Zhang, D.; Tang, G.; Ji, X.; Li, W.; Li, C.; Yang, X. Hydrothermal synthesis and visible-light photocatalytic activity of α-Fe2O3/TiO2 composite hollow microspheres. Ceram. Int., 2013, 39(8), 8633-8640.
[11]
Gholami, T.; Bazarganipour, M.; Salavati-Niasari, M.; Bagheri, S. Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: Synthesis and characterization. J. Mater. Sci. Mater. Electron., 2015, 26, 6170.
[12]
Shi, J.; Wang, X. Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des., 2011, 11(4), 949-954.
[13]
Tavares, C.J.; Marques, S.M.; Rebouta, L.; Lanceros-Méndez, S.; Sencadas, V.; Costa, C.M.; Alves, E.; Fernandes, A.J. PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Films, 2008, 517(3), 1161-1166.
[14]
Wang, H.; Wang, T.; Xu, P. Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO2 films. J. Mater. Sci. Mater. Electron., 1998, 9, 327-330.
[15]
Anandan, K.; Rajendran, V. Influence of dopant concentrations (Mn = 1, 2 and 3 mol%) on the structural, magnetic and optical properties and photocatalytic activities of SnO2 nanoparticles synthesized via the simple precipitation process. Superlattices Microstruct., 2015, 85, 185-197.
[16]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photo catalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63, 515-582.
[17]
Hou, L.R.; Yuan, C.Z.; Peng, Y. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater., 2007, 139, 310-315.
[18]
Messaadi, C.; Ghrib, M.; Chenain, H.; Silván, M.M.; Ezzaouia, H. Structural, optical and electrical properties of SnO2 doped TiO2 synthesized by the sol-gel method. J. Mater. Sci. Mater. Electron., 2017, 29, 3095-3103.
[19]
Tachibana, Y.; Umekita, K.; Otsuka, Y.; Yasuhiro, S. Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D Appl. Phys., 2008, 41, 1-5.
[20]
Cardoso, W.S.; Longo, C.; De Paoli, M.A. Preparação de Eletrodos Opticamente Transparentes. Química. Nova, 2006, 28, 345-349.
[21]
Vannice, M.A.; Sudhakar, C.A. Model for the metal-support effect enhancing carbon monoxide hydrogenation rates over platinum−titania catalysts. J. Phys. Chem., 1984, 88, 2429-2432.
[22]
Thompson, T.L.; Yates, J.T. Surface science studies of the photoactivation of TiO2 new photochemical processes. J. Chem. Rev, 2006, 106, 4428-4453.
[23]
Kirszensztej, P.; Tolinska, A.; Przekop, R. Thermal analysis of gel-derived support for metallic catalyst. J. Therm. Anal. Calorim., 2009, 95, 93.
[24]
Hassan, S.M.; Ahmed, A.I.; Mannaa, M.A. Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2 nanoparticles. Ceram. Int., 2018, 44, 6201-6211.
[25]
Patil, S.M.; Dhodamani, A.G.; Vanalakar, S.A.; Deshmukh, S.P.; Delekar, S.D. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing. J. Phys. Chem. Solids, 2018, 115, 127-136.
[26]
Wang, C.L.; Hwang, W.S.; Chu, H.L.; Lin, H.J.; Ko, H.H.; Wang, M.C. Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Ceram. Int., 2016, 42, 13136-13143.
[27]
Marzec, A.; Radecka, M.; Maziarz, W.; Kusior, A.; Pedzich, Z. Structural, optical and electrical properties of nanocrystalline TiO2, SnO2 and their composites obtained by the sol-gel method. J. Eur. Ceram. Soc., 2016, 36, 2981-2989.
[28]
Madarasz, J.; Braileanu, A.; Crisan, M.; Raileanu, M.; Pokol, G. Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS. J. Therm. Anal. Calorim., 2009, 97, 265-271.
[29]
Sergent, N.; Gelin, P.; Perier-Camby, L.; Praliaud, H.; Thomas, G. Study of the interactions between carbon monoxide and high specific surface area tin dioxideThermogravimetric analysis and FTIR spectroscopy. J. Therm. Anal. Calorim., 2003, 72, 1117-1126.
[30]
Pulisova, P.; Bohacek, J.; Subrt, J.; Szatmary, L.; Bezdicka, P.; Vecernıkova, E.; Balek, V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J. Therm. Anal. Calorim., 2010, 101, 607-613.
[31]
Crişan, M.; Brăileanu, A.; Crişan, D.; Răileanu, M.; Drăgan, N.; Mardare, D.; Teodorescu, V.; Ianculescu, A.; Bîrjega, R.; Dumitru, M. Thermal behaviour study of some sol-gel TiO2 based materials. J. Therm. Anal. Calorim., 2008, 1, 7-13.
[32]
Banerjee, S.; Kumar, A.; Sujatha Devi, P. Preparation of nanoparticles of oxides by the citrate–nitrate process. Effect of metal ions on the thermal decomposition characteristics. J. Therm. Anal. Calorim., 2011, 104, 859-867.
[34]
Krishnakumar, T.; Pinna, N.; Kumari, K.P.; Perumal, K.; Jayprakash, R. Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett., 2008, 62, 3437-3440.
[35]
Kobayashi, Y.; Okamoto, M.; Tomita, A. Preparation of tin oxide monolith by the sol-gel method from inorganic salt. J. Mater. Sci., 1996, 31, 6125-7.
[36]
Wang, Y.; Ramos, I.; Santiago-Aviles, J.J. Synthesis of ultra-fine porous tin oxide fibers and its process characterization. Nanotechnology, 2007, 18, 295601.
[37]
Zhao, D.; Peng, T.; Liu, M.; Lu, L.; Cai, P. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous Mesoporous Mater., 2008, 114, 166-174.
[38]
Liqiang, J.; Honggang, F.; Baiqi, W.; Dejun, W.; Baifu, X.; Shudan, L. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B
Environ, 2006, 62, 282-291.
[39]
Shi, L.Y.; Li, C.Z.; Gu, H.C.; Fang, D.Y. Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles. Mater. Chem. Phys., 2000, 62, 62-67.
[40]
Cui, Y.M.; Fan, S.H. Synthesis, characterization and application of complex nanometer particles of Rh3+/TiO2/SnO2 in photocatalytic degradation of particles. Chin. Photograph. Sci. Photochem, 2003, 21, 161.