Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis and Characterization of SnO2-TiO2 Nanocomposites Photocatalysts

Author(s): Charfeddine Messaadi, Taher Ghrib*, Jalila Jalali, Mondher Ghrib, Alanood Abdullah Alyami, Mounir Gaidi , Miguel Manso Silvan and Hatem Ezzaouia

Volume 15, Issue 4, 2019

Page: [398 - 406] Pages: 9

DOI: 10.2174/1573413714666180927110912

Price: $65

Abstract

Background: The photocatalytic activity of SnO2-TiO2 nanocomposites was successfully assessed after synthesis by Sol-Gel method, deposition on porous silicon material and annealing at 400, 600 and 800oC temperatures, with surface grain size in the range between 5 and 12 nm. The photocatalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (SEM), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG) and mass spectroscopy (MS). The photocatalytic assessment suggests that this SnO2-TiO2 photocatalyst presents important photocatalytic efficiency to methyl blue (MB) at low annealing temperature.

Methods: In this work, sol-gel method is used to prepare SnO2-TiO2 nanocomposites; which were deposited on porous silicon, annealed at different temperatures and investigated to understand their structural, morphological, optical and physical properties. Their photocatalytic activity was evaluated by using the degradation of MB under irradiation with UV light.

Results: The intensity of the characteristic absorption band of methyl blue at 655 nm decreased significantly with the increasing irradiation time. Meanwhile, a change in color of the solution occurred; turning from blue to colorless after 20 min of irradiation, and thus indicating the gradual decomposition of methyl blue molecules during UV light irradiation in the presence of the prepared SnO2-TiO2. As expected, no degradation of the SnO2-TiO2 nanocomposites occurred under control experimental conditions. The MB degradation efficiency was reported by C/C0 quantity; where C and C0 correspond respectively to its concentration at time t and initial concentration. In the presence of photocatalysts, it can be clearly deduced that after irradiation for 20 min, the C/C0 of the MB value was about 0% with the prepared and untreated nanocomposites of SnO2-TiO2 and remains constant when using a SnO2-TiO2 nanocomposite treated at 800°C.

Conclusion: This research has successfully synthesized the SnO2-TiO2 nanocomposite photocatalysts by Sol-Gel process and deposited by spin–coating technique on porous silicon substrates. Besides, all structural, optical and catalytic properties were studied and CO related. The obtained material was annealed at three different temperatures 400°C, 600°C and 800°C. It is denoted that its grain size increases from about 5 nm to 12 nm with the annealing temperature. The photocatalytic effect has been tested on the MB solution, which demonstrates that the nanometric grain size enhances the adsorption properties and achieves a good photocatalytic performance at a low temperature.

Keywords: SnO2 doped TiO2, nanocomposites, photocatalytic, methyl blue, porous silicon, TGA, DTG.

Graphical Abstract

[1]
Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 2004, 32, 177.
[2]
Herrmann, J.M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53, 115-129.
[3]
Hajjaji, A.; Trabelsi, K.; Atyaoui, A.; Gaidi, M.; Bousselmi, L.; Bessais, B.; El Khakani, M.A. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films. Nanoscale Res. Lett., 2014, 9, 543.
[4]
Xu, F.Y.; Xiao, W.; Cheng, B.; Yu, J.G. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy, 2014, 39, 15394-15402.
[5]
Xiang, Q.J.; Cheng, B.; Yu, J.G. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed., 2015, 54, 2-19.
[6]
Xiang, Q.J.; Lang, D.; Shen, T.T.; Liu, F. Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl. Catal. B Environ, 2015, 162, 196-203.
[7]
Yang, X.; Qin, J.; Jiang, Y.; Li, R.; Li, Y.; Tang, H. Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Advances, 2014, 4(36), 18627-18636.
[8]
Yang, X.; Qin, J.; Jiang, Y.; Chen, K.; Yang, X.; Zhang, D.; Li, R.; Tang, H. Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl. Catal. B Environ, 2015, 166, 231-240.
[9]
Yang, X.; Qin, J.; Li, Y.; Zhang, R.; Tang, H. Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance. J. Hazard. Mater., 2013, 261, 342-350.
[10]
Tang, H.; Zhang, D.; Tang, G.; Ji, X.; Li, W.; Li, C.; Yang, X. Hydrothermal synthesis and visible-light photocatalytic activity of α-Fe2O3/TiO2 composite hollow microspheres. Ceram. Int., 2013, 39(8), 8633-8640.
[11]
Gholami, T.; Bazarganipour, M.; Salavati-Niasari, M.; Bagheri, S. Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: Synthesis and characterization. J. Mater. Sci. Mater. Electron., 2015, 26, 6170.
[12]
Shi, J.; Wang, X. Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des., 2011, 11(4), 949-954.
[13]
Tavares, C.J.; Marques, S.M.; Rebouta, L.; Lanceros-Méndez, S.; Sencadas, V.; Costa, C.M.; Alves, E.; Fernandes, A.J. PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Films, 2008, 517(3), 1161-1166.
[14]
Wang, H.; Wang, T.; Xu, P. Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO2 films. J. Mater. Sci. Mater. Electron., 1998, 9, 327-330.
[15]
Anandan, K.; Rajendran, V. Influence of dopant concentrations (Mn = 1, 2 and 3 mol%) on the structural, magnetic and optical properties and photocatalytic activities of SnO2 nanoparticles synthesized via the simple precipitation process. Superlattices Microstruct., 2015, 85, 185-197.
[16]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photo catalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63, 515-582.
[17]
Hou, L.R.; Yuan, C.Z.; Peng, Y. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater., 2007, 139, 310-315.
[18]
Messaadi, C.; Ghrib, M.; Chenain, H.; Silván, M.M.; Ezzaouia, H. Structural, optical and electrical properties of SnO2 doped TiO2 synthesized by the sol-gel method. J. Mater. Sci. Mater. Electron., 2017, 29, 3095-3103.
[19]
Tachibana, Y.; Umekita, K.; Otsuka, Y.; Yasuhiro, S. Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D Appl. Phys., 2008, 41, 1-5.
[20]
Cardoso, W.S.; Longo, C.; De Paoli, M.A. Preparação de Eletrodos Opticamente Transparentes. Química. Nova, 2006, 28, 345-349.
[21]
Vannice, M.A.; Sudhakar, C.A. Model for the metal-support effect enhancing carbon monoxide hydrogenation rates over platinum−titania catalysts. J. Phys. Chem., 1984, 88, 2429-2432.
[22]
Thompson, T.L.; Yates, J.T. Surface science studies of the photoactivation of TiO2 new photochemical processes. J. Chem. Rev, 2006, 106, 4428-4453.
[23]
Kirszensztej, P.; Tolinska, A.; Przekop, R. Thermal analysis of gel-derived support for metallic catalyst. J. Therm. Anal. Calorim., 2009, 95, 93.
[24]
Hassan, S.M.; Ahmed, A.I.; Mannaa, M.A. Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2 nanoparticles. Ceram. Int., 2018, 44, 6201-6211.
[25]
Patil, S.M.; Dhodamani, A.G.; Vanalakar, S.A.; Deshmukh, S.P.; Delekar, S.D. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing. J. Phys. Chem. Solids, 2018, 115, 127-136.
[26]
Wang, C.L.; Hwang, W.S.; Chu, H.L.; Lin, H.J.; Ko, H.H.; Wang, M.C. Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Ceram. Int., 2016, 42, 13136-13143.
[27]
Marzec, A.; Radecka, M.; Maziarz, W.; Kusior, A.; Pedzich, Z. Structural, optical and electrical properties of nanocrystalline TiO2, SnO2 and their composites obtained by the sol-gel method. J. Eur. Ceram. Soc., 2016, 36, 2981-2989.
[28]
Madarasz, J.; Braileanu, A.; Crisan, M.; Raileanu, M.; Pokol, G. Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS. J. Therm. Anal. Calorim., 2009, 97, 265-271.
[29]
Sergent, N.; Gelin, P.; Perier-Camby, L.; Praliaud, H.; Thomas, G. Study of the interactions between carbon monoxide and high specific surface area tin dioxideThermogravimetric analysis and FTIR spectroscopy. J. Therm. Anal. Calorim., 2003, 72, 1117-1126.
[30]
Pulisova, P.; Bohacek, J.; Subrt, J.; Szatmary, L.; Bezdicka, P.; Vecernıkova, E.; Balek, V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J. Therm. Anal. Calorim., 2010, 101, 607-613.
[31]
Crişan, M.; Brăileanu, A.; Crişan, D.; Răileanu, M.; Drăgan, N.; Mardare, D.; Teodorescu, V.; Ianculescu, A.; Bîrjega, R.; Dumitru, M. Thermal behaviour study of some sol-gel TiO2 based materials. J. Therm. Anal. Calorim., 2008, 1, 7-13.
[32]
Banerjee, S.; Kumar, A.; Sujatha Devi, P. Preparation of nanoparticles of oxides by the citrate–nitrate process. Effect of metal ions on the thermal decomposition characteristics. J. Therm. Anal. Calorim., 2011, 104, 859-867.
[33]
https://www.sisweb.com/software/ms/nist.htm#search (Accessed on: September 21, 2018).
[34]
Krishnakumar, T.; Pinna, N.; Kumari, K.P.; Perumal, K.; Jayprakash, R. Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett., 2008, 62, 3437-3440.
[35]
Kobayashi, Y.; Okamoto, M.; Tomita, A. Preparation of tin oxide monolith by the sol-gel method from inorganic salt. J. Mater. Sci., 1996, 31, 6125-7.
[36]
Wang, Y.; Ramos, I.; Santiago-Aviles, J.J. Synthesis of ultra-fine porous tin oxide fibers and its process characterization. Nanotechnology, 2007, 18, 295601.
[37]
Zhao, D.; Peng, T.; Liu, M.; Lu, L.; Cai, P. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous Mesoporous Mater., 2008, 114, 166-174.
[38]
Liqiang, J.; Honggang, F.; Baiqi, W.; Dejun, W.; Baifu, X.; Shudan, L. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B Environ, 2006, 62, 282-291.
[39]
Shi, L.Y.; Li, C.Z.; Gu, H.C.; Fang, D.Y. Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles. Mater. Chem. Phys., 2000, 62, 62-67.
[40]
Cui, Y.M.; Fan, S.H. Synthesis, characterization and application of complex nanometer particles of Rh3+/TiO2/SnO2 in photocatalytic degradation of particles. Chin. Photograph. Sci. Photochem, 2003, 21, 161.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy