[1]
Lewis, C.A.; Wolfenden, R. Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17328-17333.
[2]
Patel, R.N. Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules, 2013, 3(4), 741-777.
[3]
FDA, Development of New Stereoisomeric Drugs. 1992.
[4]
Zhang, Z.J.; Pan, J.; Ma, B.D.; Xu, J.H. Efficient biocatalytic synthesis of chiral chemicals. Adv. Biochem. Eng. Biotechnol., 2016, 155, 55-106.
[5]
Rat’ko, A.A.; Stefan-van Staden, R.I. Determination of baclofen enantiomers in pharmaceutical formulations using maltodextrin-based enantioselective, potentiometric membrane electrodes. Farmaco, 2004, 59(12), 993-997.
[6]
Smith, S.W. Chiral toxicology: It’s the same thing...only different. Toxicol. Sci., 2009, 110(1), 4-30.
[7]
Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci., 2006, 2(2), 85-100.
[8]
Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal., 2018, 147, 323-340.
[9]
Kisukuri, C.M.; Andrade, L.H. Production of chiral compounds using immobilized cells as a source of biocatalysts. Org. Biomol. Chem., 2015, 13(40), 10086-10107.
[10]
Piasecki, S.K.; Taylor, C.A.; Detelich, J.F.; Liu, J.; Zheng, J.; Komsoukaniants, A.; Siegel, D.R.; Keatinge-Clay, A.T. Employing modular polyketide synthase ketoreductases as biocatalysts in the preparative chemoenzymatic syntheses of diketide chiral building blocks. Chem. Biol., 2011, 18(10), 1331-1340.
[11]
Solomon, M.; Muro, S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv. Drug Deliv. Rev., 2017, 118, 109-134.
[12]
Schoni, R. The use of snake venom-derived compounds for new functional diagnostic test kits in the field of haemostasis. Pathophysiol. Haemost. Thromb., 2005, 34(4-5), 234-240.
[13]
Ali Khan, A.; Alzohairy, M.A. Recent advances and applications of immobilized enzyme technologies: A review. Res. J. Biol. Sci., 2010, 5(8), 565-575.
[14]
Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Enzyme-immobilized microfluidic process reactors. Molecules, 2011, 16(7), 6041-6059.
[15]
Das, P.; Das, M.; Chinnadayyala, S.R.; Singha, I.M.; Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron., 2016, 79, 386-397.
[16]
Bilal, M.; Asgher, M.; Parra-Saldivar, R.; Hu, H.; Wang, W.; Zhang, X.; Iqbal, H.M.N. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants - A review. Sci. Total Environ., 2017, 576, 646-659.
[17]
DiCosimo, R.; McAuliffe, J.; Poulose, A.J.; Bohlmann, G. Industrial use of immobilized enzymes. Chem. Soc. Rev., 2013, 42(15), 6437-6474.
[18]
Perumal Samy, R.; Stiles, B.G.; Franco, O.L.; Sethi, G.; Lim, L.H.K. Animal venoms as antimicrobial agents. Biochem. Pharmacol., 2017, 134, 127-138.
[19]
Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci., 2016, 7(2), 842-854.
[20]
Komives, C.F.; Sanchez, E.E.; Rathore, A.S.; White, B.; Balderrama, M.; Suntravat, M.; Cifelli, A.; Joshi, V. Opossum peptide that can neutralize rattlesnake venom is expressed in Escherichia coli. Biotechnol. Prog., 2017, 33(1), 81-86.
[21]
Stocker, K.; Barlow, G.H. The coagulant enzyme from Bothrops atrox venom (batroxobin). Methods Enzymol., 1976, 45, 214-223.
[22]
Takacs, Z.; Nathan, S. Animal Venoms in Medicine.Encyclopedia of Toxicology; Elsevier, 2014, pp. 252-259.
[23]
Radis-Baptista, G. Vipericidins, snake venom cathelicidin-related peptides, in the milieu of reptilian antimicrobial polypeptides., 2015.
[24]
Falcao, C.B.; de La Torre, B.G.; Perez-Peinado, C.; Barron, A.E.; Andreu, D.; Radis-Baptista, G. Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids, 2014, 46(11), 2561-2571.
[25]
Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.; Sampaio, T.L.; Falcao, C.B.; Radis-Baptista, G.; Martins, A.M.C. Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake’s venom gland. Parasitology, 2018, 145(8), 1059-1064.
[28]
Perez-Peinado, C.; Dias, S.A.; Domingues, M.M.; Benfield, A.H.; Freire, J.M.; Radis-Baptista, G.; Gaspar, D.; Castanho, M.; Craik, D.J.; Henriques, S.T.; Veiga, A.S.; Andreu, D. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem., 2018, 293(5), 1536-1549.
[29]
Wang, L.; Chan, J.Y.; Rego, J.V.; Chong, C.M.; Ai, N.; Falcao, C.B.; Radis-Baptista, G.; Lee, S.M. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim. Biophys. Acta, 2015, 1850(6), 1253-1260.
[30]
Falcao, C.B.; Perez-Peinado, C.; de la Torre, B.G.; Mayol, X.; Zamora-Carreras, H.; Jimenez, M.A.; Radis-Baptista, G.; Andreu, D. Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity. J. Med. Chem., 2015, 58(21), 8553-8563.
[31]
Deák, F.; Liu, X.; Khvotchev, M.; Li, G.; Kavalali, E.T.; Sugita, S.; Südhof, T.C. Alpha-latrotoxin stimulates a novel pathway of Ca2+-dependent synaptic exocytosis independent of the classical synaptic fusion machinery. J. Neurosci., 2009, 29(27), 8639-8648.
[32]
Vulfius, C.A.; Kasheverov, I.E.; Kryukova, E.V.; Spirova, E.N.; Shelukhina, I.V.; Starkov, V.G.; Andreeva, T.V.; Faure, G.; Zouridakis, M.; Tsetlin, V.I.; Utkin, Y.N. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS One, 2017, 12(10), e0186206.
[33]
Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J., 2011, 9(3), 283-300.
[34]
Bende, N.S.; Dziemborowicz, S.; Herzig, V.; Ramanujam, V.; Brown, G.W.; Bosmans, F.; Nicholson, G.M.; King, G.F.; Mobli, M. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop. FEBS J., 2015, 282(5), 904-920.
[35]
Windley, M.J.; Vetter, I.; Lewis, R.J.; Nicholson, G.M. Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology, 2017, 127, 224-242.
[36]
Fletcher, J.I.; Smith, R.; O’Donoghue, S.I.; Nilges, M.; Connor, M.; Howden, M.E.; Christie, M.J.; King, G.F. The structure of a novel insecticidal neurotoxin, omega-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nat. Struct. Biol., 1997, 4(7), 559-566.
[37]
Herzig, V.; King, G.F. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins (Basel), 2015, 7(10), 4366-4380.
[38]
Nakasu, E.Y.T.; Williamson, S.M.; Edwards, M.G.; Fitches, E.C.; Gatehouse, J.A.; Wright, G.A.; Gatehouse, A.M.R. Novel biopesticide based on a spider venom peptide shows no adverse effects on honeybees. Proc. Biol. Sci., 1787, 2014(281), 20140619.
[39]
Research, B.C.C. Enzymes for Industrial Applications - BIO030E 2008.
[40]
Research, B.C.C. Protein Drugs: Global Markets and Manufacturing
Technologies - BIO021C 2008.
[41]
Research, B.C.C. Global Markets for Enzymes in Industrial Applications
- BIO030J. 2017.
[42]
Research, B.C.C. Global Markets and Manufacturing Technologies
for Protein Drugs - BIO021E 2016.
[43]
Gen, The Top 15 Best-Selling Drugs of 2016 2017.
[44]
FDA Drug Innovation - Novel Drug Approvals for 2017. 2017.
[45]
Camargo, L.C.; Campos, G.A.A.; Galante, P.; Biolchi, A.M.; Gonçalves, J.C.; Lopes, K.S.; Mortari, M.R. Peptides isolated from animal venom as a platform for new therapeutics for the treatment of Alzheimer’s disease. Neuropeptides, 2018, 67, 79-86.
[46]
Chassagnon, I.R.; McCarthy, C.A.; Chin, Y.K.Y.; Pineda, S.S.; Keramidas, A.; Mobli, M.; Pham, V.; De Silva, T.M.; Lynch, J.W.; Widdop, R.E.; Rash, L.D.; King, G.F. Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3750-3755.
[47]
Chen, Y.C.; Ho, C.C.; Yi, C.H.; Liu, X.Z.; Cheng, T.T.; Lam, C.F. Exendin-4, a glucagon-like peptide-1 analogue accelerates healing of chronic gastric ulcer in diabetic rats. PLoS One, 2017, 12(11), e0187434.
[48]
Jimenez, R.; Ikonomopoulou, M.P.; Lopez, J.A.; Miles, J.J. Immune drug discovery from venoms. Toxicon, 2018, 141, 18-24.
[49]
Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett., 2017, 402, 16-31.
[50]
Robinson, S.D.; Safavi-Hemami, H. Venom peptides as pharmacological tools and therapeutics for diabetes. Neuropharmacology, 2017, 127, 79-86.
[51]
Wang, Y.; Li, X.; Yang, M.; Wu, C.; Zou, Z.; Tang, J.; Yang, X. Centipede venom peptide SsmTX-I with two intramolecular disulfide bonds shows analgesic activities in animal models. J. Pept. Sci., 2017, 23(5), 384-391.
[52]
Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278), 1196-1199.
[53]
Baldo, B.A. Enzymes approved for human therapy: indications, mechanisms and adverse effects. BioDrugs, 2015, 29(1), 31-55.
[54]
Mishra, M.; Arukha, A.P.; Patel, A.K.; Behera, N.; Mohanta, T.K.; Yadav, D. Multi-drug resistant coliform: Water sanitary standards and health hazards. Front. Pharmacol., 2018, 9, 311.
[55]
Berlin, A.; Maximenko, V.; Gilkes, N.; Saddler, J. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng., 2007, 97(2), 287-296.
[56]
de Souza, A.P.; Leite, D.C.C.; Pattathil, S.; Hahn, M.G.; Buckeridge, M.S. Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production. BioEnergy Res., 2013, 6(2), 564-579.
[57]
Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels, 2011, 4, 36.
[58]
Jeremic, D.; Goacher, R.E.; Yan, R.; Karunakaran, C.; Master, E.R. Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases. Biotechnol. Biofuels, 2014, 7(1), 496.
[59]
Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 2007, 315(5813), 804-807.
[60]
McCann, M.C.; Carpita, N.C. Biomass recalcitrance: A multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot., 2015, 66(14), 4109-4118.
[61]
Matsumoto, K.I.; Taguchi, S. Enzyme and metabolic engineering for the production of novel biopolymers: Crossover of biological and chemical processes. Curr. Opin. Biotechnol., 2013, 24(6), 1054-1060.
[62]
Tsuge, Y.; Kawaguchi, H.; Sasaki, K.; Kondo, A. Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb. Cell Fact., 2016, 15, 19.
[63]
Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol., 2017, 10(6), 1308-1322.
[64]
Gasser, C.A.; Yu, L.; Svojitka, J.; Wintgens, T.; Ammann, E.M.; Shahgaldian, P.; Corvini, P.F.; Hommes, G. Advanced enzymatic elimination of phenolic contaminants in wastewater: A nano approach at field scale. Appl. Microbiol. Biotechnol., 2014, 98(7), 3305-3316.
[65]
Peplow, M. Enzymes offer waste-to-energy solution. Science, 2017, 355(6332), 1360-1361.
[66]
Pollmann, K.; Kutschke, S.; Matys, S.; Kostudis, S.; Hopfe, S.; Raff, J. Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals, 2016, 6(2), 54.
[67]
Aresta, M.; Dibenedetto, A.; Quaranta, E. Enzymatic Conversion of
CO2 (Carboxylation Reactions and Reduction to Energy-Rich C1
Molecules) In: Reaction Mechanisms in Carbon Dioxide Conversion; Springer Berlin Heidelberg: Berlin, Heidelberg. , 2016. pp.
347-371
[68]
Shi, J.; Jiang, Y.; Jiang, Z.; Wang, X.; Wang, X.; Zhang, S.; Han, P.; Yang, C. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev., 2015, 44(17), 5981-6000.
[69]
Bao, L.; Huang, Q.; Chang, L.; Sun, Q.; Zhou, J.; Lu, H. Cloning and characterization of two β-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl. Biochem. Biotechnol., 2012, 166(1), 72-86.
[70]
Chang, L.; Ding, M.; Bao, L.; Chen, Y.; Zhou, J.; Lu, H. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl. Microbiol. Biotechnol., 2011, 90(6), 1933-1942.
[71]
Liu, G.; Wu, S.; Jin, W.; Sun, C. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities. Sci. Rep., 2016, 6, 18726.
[72]
Rashamuse, K.J.; Visser, D.F.; Hennessy, F.; Kemp, J.; Roux-van der Merwe, M.P.; Badenhorst, J.; Ronneburg, T.; Francis-Pope, R.; Brady, D. Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library. Curr. Microbiol., 2013, 66(2), 145-151.
[73]
Fisher, A.K.; Freedman, B.G.; Bevan, D.R.; Senger, R.S. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput. Struct. Biotechnol. J., 2014, 11(18), 91-99.
[74]
Guo, W.; Sheng, J.; Feng, X. Mini-review: In vitro metabolic engineering for biomanufacturing of high-value products. Comput. Struct. Biotechnol. J., 2017, 15, 161-167.
[75]
Jin, Y.S.; Cate, J.H. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol., 2017, 41, 99-106.
[76]
Pröschel, M.; Detsch, R.; Boccaccini, A.R.; Sonnewald, U. Engineering of metabolic pathways by artificial enzyme channels. Front. Bioeng. Biotechnol., 2015, 3, 168.
[77]
Tatsis, E.C.; O’Connor, S.E. New developments in engineering plant metabolic pathways. Curr. Opin. Biotechnol., 2016, 42, 126-132.
[78]
Narcross, L.; Bourgeois, L.; Fossati, E.; Burton, E.; Martin, V.J.J. Mining enzyme diversity of transcriptome libraries through dna synthesis for benzylisoquinoline alkaloid pathway optimization in yeast. ACS Synth. Biol., 2016, 5(12), 1505-1518.
[79]
Miyahisa, I.; Kaneko, M.; Funa, N.; Kawasaki, H.; Kojima, H.; Ohnishi, Y.; Horinouchi, S. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol., 2005, 68(4), 498-504.
[80]
Walther, T.; Topham, C.M.; Irague, R.; Auriol, C.; Baylac, A.; Cordier, H.; Dressaire, C.; Lozano-Huguet, L.; Tarrat, N.; Martineau, N.; Stodel, M.; Malbert, Y.; Maestracci, M.; Huet, R.; André, I.; Remaud-Siméon, M.; François, J.M. Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid. Nat. Commun., 2017, 8, 15828.
[81]
Andrade, A.F.; Borges, K.S.; Silveira, V.S. Update on the use of L-asparaginase in infants and adolescent patients with acute lymphoblastic leukemia. Clin. Med. Insights Oncol., 2014, 8, 95-100.
[82]
Brooks, P.J.; Tagle, D.A.; Groft, S. Expanding rare disease drug trials based on shared molecular etiology. Nat. Biotechnol., 2014, 32(6), 515-518.
[83]
Reis, E.S.; Mastellos, D.C.; Yancopoulou, D.; Risitano, A.M.; Ricklin, D.; Lambris, J.D. Applying complement therapeutics to rare diseases. Clin. Immunol., 2015, 161(2), 225-240.
[84]
Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem., 2018, 26(10), 2738-2758.
[85]
Thayer, A.M. Improving peptides (Small firms develop better peptide drug candidates to expand this pharmaceutical class and attract big pharma partners). Chem. Eng. News, 2011, 89(22), 13-20.
[86]
King, G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther., 2011, 11(11), 1469-1484.
[87]
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv., 2013, 4(11), 1443-1467.
[88]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[89]
Robinson, S.D.; Undheim, E.A.B.; Ueberheide, B.; King, G.F. Venom peptides as therapeutics: Advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteomics, 2017, 14(10), 931-939.
[90]
Carter, P.J. Introduction to current and future protein therapeutics: A protein engineering perspective. Exp. Cell Res., 2011, 317(9), 1261-1269.
[91]
Chung, J. Special issue on therapeutic antibodies and biopharmaceuticals. Exp. Mol. Med., 2017, 49(3), e304.
[92]
Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; Błażewicz-Paszkowycz, M.; Bock, P.; Boxshall, G.; Boyko, C.B.; Brandão, S.N.; Bray, R.A.; Bruce, N.L.; Cairns, S.D.; Chan, T.Y.; Cheng, L.; Collins, A.G.; Cribb, T.; Curini-Galletti, M.; Dahdouh-Guebas, F.; Davie, P.J.F.; Dawson, M.N.; De Clerck, O.; Decock, W.; De Grave, S.; de Voogd, N.J.; Domning, D.P.; Emig, C.C.; Erséus, C.; Eschmeyer, W.; Fauchald, K.; Fautin, D.G.; Feist, S.W.; Fransen, C.H.J.M.; Furuya, H.; Garcia-Alvarez, O.; Gerken, S.; Gibson, D.; Gittenberger, A.; Gofas, S.; Gómez-Daglio, L.; Gordon, D.P.; Guiry, M.D.; Hernandez, F.; Hoeksema, B.W.; Hopcroft, R.R.; Jaume, D.; Kirk, P.; Koedam, N.; Koenemann, S.; Kolb, J.B.; Kristensen, R.M.; Kroh, A.; Lambert, G.; Lazarus, D.B.; Lemaitre, R.; Longshaw, M.; Lowry, J.; Macpherson, E.; Madin, L.P.; Mah, C.; Mapstone, G.; McLaughlin, P.A.; Mees, J.; Meland, K.; Messing, C.G.; Mills, C.E.; Molodtsova, T.N.; Mooi, R.; Neuhaus, B.; Ng, P.K.L.; Nielsen, C.; Norenburg, J.; Opresko, D.M.; Osawa, M.; Paulay, G.; Perrin, W.; Pilger, J.F.; Poore, G.C.B.; Pugh, P.; Read, G.B.; Reimer, J.D.; Rius, M.; Rocha, R.M.; Saiz-Salinas, J.I.; Scarabino, V.; Schierwater, B.; Schmidt-Rhaesa, A.; Schnabel, K.E.; Schotte, M.; Schuchert, P.; Schwabe, E.; Segers, H.; Self-Sullivan, C.; Shenkar, N.; Siegel, V.; Sterrer, W.; Stöhr, S.; Swalla, B.; Tasker, M.L.; Thuesen, E.V.; Timm, T.; Todaro, M.A.; Turon, X.; Tyler, S.; Uetz, P.; van der Land, J.; Vanhoorne, B.; van Ofwegen, L.P.; van Soest, R.W.M.; Vanaverbeke, J.; Walker-Smith, G.; Walter, T.C.; Warren, A.; Williams, G.C.; Wilson, S.P.; Costello, M.J. The magnitude of global marine species diversity. Curr. Biol., 2012, 22(23), 2189-2202.
[93]
Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol., 2011, 9(8), e1001127.
[94]
Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; Bharathi, P.A.L.; Boetius, A.; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedrós-Alió, C.; Ramette, A.; Schouten, S.; Stal, L.; Thessen, A.; Leeuw, J.D.; Sogin, M. A Global Census of Marine Microbes.Life in the World’s Oceans; McIntyre, A.D., Ed.; Wiley-Blackwell: Oxford, UK, 2010, pp. 221-245.
[95]
van de Water, J.; Allemand, D.; Ferrier-Pages, C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome, 2018, 6(1), 64.
[96]
Goulletquer, P.; Gros, P.; Boeuf, G.; Weber, J. The Importance of Marine Biodiversity.Biodiversity in the Marine Environment; Springer Netherlands: Dordrecht, 2014, pp. 1-13.
[97]
Smith, W.L.; Stern, J.H.; Girard, M.G.; Davis, M.P. Evolution of venomous cartilaginous and ray-finned fishes. Integr. Comp. Biol., 2016, 56(5), 950-961.
[98]
Smith, W.L.; Wheeler, W.C. Venom evolution widespread in fishes: A phylogenetic road map for the bioprospecting of piscine venoms. J. Hered., 2006, 97(3), 206-217.
[99]
Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59(1), 143-169.
[100]
Ponce, D.; Brinkman, D.L.; Potriquet, J.; Mulvenna, J. Tentacle transcriptome and venom proteome of the pacific sea nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins (Basel), 2016, 8(4), 102.
[101]
Brinkman, D.L.; Jia, X.; Potriquet, J.; Kumar, D.; Dash, D.; Kvaskoff, D.; Mulvenna, J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics, 2015, 16, 407.
[102]
Verdes, A.; Anand, P.; Gorson, J.; Jannetti, S.; Kelly, P.; Leffler, A.; Simpson, D.; Ramrattan, G.; Holford, M. From mollusks to medicine: A venomics approach for the discovery and characterization of therapeutics from terebridae peptide toxins. Toxins (Basel), 2016, 8(4), 117.
[103]
Hennebert, E.; Leroy, B.; Wattiez, R.; Ladurner, P. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J. Proteomics, 2015, 128, 83-91.
[104]
Gutleben, J.; Chaib De Mares, M.; van Elsas, J.D.; Smidt, H.; Overmann, J.; Sipkema, D. The multi-omics promise in context: From sequence to microbial isolate. Crit. Rev. Microbiol., 2018, 44(2), 212-229.
[105]
Jeon, J.H.; Lee, H.S.; Kim, J.T.; Kim, S.J.; Choi, S.H.; Kang, S.G.; Lee, J.H. Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl. Microbiol. Biotechnol., 2012, 93(2), 623-631.
[106]
Kim, E.Y.; Oh, K.H.; Lee, M.H.; Kang, C.H.; Oh, T.K.; Yoon, J.H. Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl. Environ. Microbiol., 2009, 75(1), 257-260.
[107]
Kim, W.J.; Park, J.W.; Park, J.K.; Choi, D.J.; Park, Y.I. Purification and characterization of a fucoidanase (FNase S) from a marine bacterium Sphingomonas paucimobilis PF-1. Mar. Drugs, 2015, 13(7), 4398-4417.
[108]
Kimura, K.; Okuda, S.; Nakayama, K.; Shikata, T.; Takahashi, F.; Yamaguchi, H.; Skamoto, S.; Yamaguchi, M.; Tomaru, Y. RNA sequencing revealed numerous polyketide synthase genes in the harmful dinoflagellate Karenia mikimotoi. PLoS One, 2015, 10(11), e0142731.
[109]
Makhdoumi, A.; Dehghani-Joybari, Z.; Mashreghi, M.; Jamialahmadi, K.; Asoodeh, A. A novel halo-alkali-tolerant and thermo-tolerant chitinase from Pseudoalteromonas sp. DC14 isolated from the Caspian Sea. Int. J. Environ. Sci. Technol., 2015, 12(12), 3895-3904.
[110]
Park, H.J.; Lee, Y.M.; Kim, S.; Wi, A.R.; Han, S.J.; Kim, H.W.; Kim, I.C.; Yim, J.H.; Kim, D. Identification of proteolytic bacteria from the Arctic Chukchi Sea expedition cruise and characterization of cold-active proteases. J. Microbiol., 2014, 52(10), 825-833.
[111]
Wang, L.; Wang, W.; Lai, Q.; Shao, Z. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ. Microbiol., 2010, 12(5), 1230-1242.
[112]
Wang, Q.F.; Wang, Y.F.; Hou, Y.H.; Shi, Y.L.; Han, H.; Miao, M.; Wu, Y.Y.; Liu, Y.P.; Yue, X.N.; Li, Y.J. Cloning, expression and biochemical characterization of recombinant superoxide dismutase from Antarctic psychrophilic bacterium Pseudoalteromonas sp. ANT506. J. Basic Microbiol., 2016, 56(7), 753-761.
[113]
Inoue, A.; Anraku, M.; Nakagawa, S.; Ojima, T. Discovery of a novel alginate lyase from nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. J. Biol. Chem., 2016, 291(30), 15551-15563.
[114]
Placido, A.; Hai, T.; Ferrer, M.; Chernikova, T.N.; Distaso, M.; Armstrong, D.; Yakunin, A.F.; Toshchakov, S.V.; Yakimov, M.M.; Kublanov, I.V.; Golyshina, O.V.; Pesole, G.; Ceci, L.R.; Golyshin, P.N. Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase. Appl. Microbiol. Biotechnol., 2015, 99(23), 10031-10046.
[115]
Zhang, L.; Huang, Y.; Xu, D.; Yang, L.; Qian, K.; Chang, G.; Gong, Y.; Zhou, X.; Ma, K. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. Appl. Microbiol. Biotechnol., 2016, 100(18), 8003-8012.
[116]
Shao, X.; Ran, L.Y.; Liu, C.; Chen, X.L.; Zhang, X.Y.; Qin, Q.L.; Zhou, B.C.; Zhang, Y.Z. Culture condition optimization and pilot scale production of the M12 metalloprotease myroilysin produced by the deep-sea bacterium Myroides profundi D25. Molecules, 2015, 20(7), 11891-11901.
[117]
Yu, P.; Wang, X.T.; Liu, J.W. Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. J. Basic Microbiol., 2015, 55(8), 1029-1039.
[118]
Zeng, R.; Xiong, P.; Wen, J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles, 2006, 10(1), 79-82.
[119]
Zhang, Y.; Hao, J.; Zhang, Y.Q.; Chen, X.L.; Xie, B.B.; Shi, M.; Zhou, B.C.; Zhang, Y.Z.; Li, P.Y. Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China Sea. Front. Microbiol., 2017, 8, 441.
[120]
Borchert, E.; Jackson, S.A.; O’Gara, F.; Dobson, A.D.W. Diversity of natural product biosynthetic genes in the microbiome of the deep sea sponges Inflatella pellicula, Poecillastra compressa, and Stelletta normani. Front. Microbiol., 2016, 07, 1027.
[121]
Cristóbal, H.A.; Breccia, J.D.; Abate, C.M. Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active beta-D-glucosidases. J. Basic Microbiol., 2008, 48(1), 16-24.
[122]
De Santi, C.; Leiros, H.K.S.; Di Scala, A.; de Pascale, D.; Altermark, B.; Willassen, N.P. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles, 2016, 20(3), 323-336.
[123]
Del-Cid, A.; Ubilla, P.; Ravanal, M.C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez, R. Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl. Biochem. Biotechnol., 2014, 172(1), 524-532.
[124]
Fu, X.T.; Lin, H.; Kim, S.M. Purification and characterization of a novel beta-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol., 2008, 78(2), 265-273.
[125]
Inoue, A.; Satoh, A.; Morishita, M.; Tokunaga, Y.; Miyakawa, T.; Tanokura, M.; Ojima, T. Functional heterologous expression and characterization of mannuronan C5-epimerase from the brown alga Saccharina japonica. Algal Res., 2016, 16, 282-291.
[126]
Irwin, J.A.; Lynch, S.V.; Coughlan, S.; Baker, P.J.; Gudmundsson, H.M.; Alfredsson, G.A.; Rice, D.W.; Engel, P.C. Alanine dehydrogenase from the psychrophilic bacterium strain PA-43: Overexpression, molecular characterization, and sequence analysis. Extremophiles, 2003, 7(2), 135-143.
[127]
Itoi, S.; Kanomata, Y.; Koyama, Y.; Kadokura, K.; Uchida, S.; Nishio, T.; Oku, T.; Sugita, H. Identification of a novel endochitinase from a marine bacterium Vibrio proteolyticus strain No. 442. Biochim. Biophys. Acta, 2007, 1774(9), 1099-1107.
[128]
Lario, L.D.; Chaud, L.; Almeida, M.D.G.; Converti, A.; Durães Sette, L.; Pessoa, A. Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol., 2015, 119(11), 1129-1136.
[129]
Le Goff, C.; Ganot, P.; Zoccola, D.; Caminiti-Segonds, N.; Allemand, D.; Tambutté, S. Carbonic anhydrases in cnidarians: Novel perspectives from the octocorallian Corallium rubrum. PLoS One, 2016, 11(8), e0160368.
[130]
Liao, M.L.; Zhang, S.; Zhang, G.Y.; Chu, Y.M.; Somero, G.N.; Dong, Y.W. Heat-resistant cytosolic malate dehydrogenases (cMDHs) of thermophilic intertidal snails (genus Echinolittorina): Protein underpinnings of tolerance to body temperatures reaching 55°C. J. Exp. Biol., 2017, 220(Pt 11), 2066-2075.
[131]
Lipowicz, B.; Hanekop, N.; Schmitt, L.; Proksch, P. An aeroplysinin-1 specific nitrile hydratase isolated from the marine sponge Aplysina cavernicola. Mar. Drugs, 2013, 11(8), 3046-3067.
[132]
Otero, I.V.R.; Ferro, M.; Bacci, M.; Ferreira, H.; Sette, L.D. De novo transcriptome assembly: A new laccase multigene family from the marine-derived basidiomycete Peniophora sp. CBMAI 1063. AMB Express, 2017, 7(1), 222.
[133]
Thapa, H.R.; Naik, M.T.; Okada, S.; Takada, K.; Molnár, I.; Xu, Y.; Devarenne, T.P. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L. Nat. Commun., 2016, 7, 11198.
[134]
Zhu, B.; Ning, L. Purification and characterization of a new κ-carrageenase from the marine bacterium vibrio sp. NJ-2. J. Microbiol. Biotechnol., 2016, 26(2), 255-262.
[135]
Morlighem, R.L. J.É.; Huang, C.; Liao, Q.; Braga Gomes, P.; Daniel Pérez, C.; de Brandão Prieto-da-Silva, Á.; Ming-Yuen Lee, S.; Rádis-Baptista, G. The holo-transcriptome of the zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A plentiful source of enzymes for potential application in green chemistry, industrial and pharmaceutical biotechnology. Mar. Drugs, 2018, 16(6), 207.
[136]
Gao, B.; Peng, C.; Yang, J.; Yi, Y.; Zhang, J.; Shi, Q. Cone snails: A big store of conotoxins for novel drug discovery. Toxins (Basel), 2017, 9(12), E397.
[137]
Robinson, S.D.; Norton, R.S. Conotoxin gene superfamilies. Mar. Drugs, 2014, 12(12), 6058-6101.
[138]
Safavi-Hemami, H.; Gajewiak, J.; Karanth, S.; Robinson, S.D.; Ueberheide, B.; Douglass, A.D.; Schlegel, A.; Imperial, J.S.; Watkins, M.; Bandyopadhyay, P.K.; Yandell, M.; Li, Q.; Purcell, A.W.; Norton, R.S.; Ellgaard, L.; Olivera, B.M. Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1743-1748.
[139]
Karthik, R.; Manigandan, V.; Ebenezar, K.K.; Vijayashree, R.; Saravanan, R. In vitro and in vivo anticancer activity of posterior salivary gland toxin from the cuttlefish Sepia pharaonis, Ehrenberg (1831). Chem. Biol. Interact., 2017, 272, 10-20.
[140]
Liao, Q.; Gong, G.; Siu, S.; Wong, C.; Yu, H.; Tse, Y.; Rádis-Baptista, G.; Lee, S. A novel ShK-Like toxic peptide from the transcriptome of the cnidarian Palythoa caribaeorum displays neuroprotection and cardioprotection in Zebrafish. Toxins (Basel), 2018, 10(6), 238.
[141]
Huang, C.; Morlighem, J.R.; Zhou, H.; Lima, E.P.; Gomes, P.B.; Cai, J.; Lou, I.; Perez, C.D.; Lee, S.M.; Radis-Baptista, G. The transcriptome of the zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) predicts a basal repertoire of toxin-like and venom-auxiliary polypeptides. Genome Biol. Evol., 2016, 8(9), 3045-3064.
[142]
Prentis, P.J.; Pavasovic, A.; Norton, R.S. Sea anemones: Quiet achievers in the field of peptide toxins. Toxins (Basel), 2018, 10(1), E36.
[143]
Berio, A.; Piazzi, A. Activity of drugs and components of natural origin in the severe myoclonic epilepsy of infancy (Dravet syndrome). Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(2), 95-98.
[144]
Logashina, Y.A.; Mosharova, I.V.; Korolkova, Y.V.; Shelukhina, I.V.; Dyachenko, I.A.; Palikov, V.A.; Palikova, Y.A.; Murashev, A.N.; Kozlov, S.A.; Stensvåg, K.; Andreev, Y.A. Peptide from sea anemone Metridium senile affects transient receptor potential ankyrin-repeat 1 (TRPA1) function and produces analgesic effect. J. Biol. Chem., 2017, 292(7), 2992-3004.
[145]
Shen, B.; Cao, Z.; Li, W.; Sabatier, J.M.; Wu, Y. Treating autoimmune disorders with venom-derived peptides. Expert Opin. Biol. Ther., 2017, 17(9), 1065-1075.
[146]
Monastyrnaya, M.; Peigneur, S.; Zelepuga, E.; Sintsova, O.; Gladkikh, I.; Leychenko, E.; Isaeva, M.; Tytgat, J.; Kozlovskaya, E. Kunitz-type peptide HCRG21 from the sea anemone Heteractis crispa is a full antagonist of the TRPV1 receptor. Mar. Drugs, 2016, 14(12), E229.
[147]
Wang, N.; Huang, Y.; Li, A.; Jiang, H.; Wang, J.; Li, J.; Qiu, L.; Li, K.; Lu, Y. Hydrostatin-TL1, an anti-inflammatory active peptide from the venom gland of Hydrophis cyanocinctus in the South China Sea. Int. J. Mol. Sci., 2016, 17(11), E1940.
[148]
Wu, G.; Wang, J.; Luo, P.; Li, A.; Tian, S.; Jiang, H.; Zheng, Y.; Zhu, F.; Lu, Y.; Xia, Z. Hydrostatin-SN1, a sea snake-derived bioactive peptide, reduces inflammation in a mouse model of acute lung injury. Front. Pharmacol., 2017, 8, 246.
[149]
Houyvet, B.; Bouchon-Navaro, Y.; Bouchon, C.; Goux, D.; Bernay, B.; Corre, E.; Zatylny-Gaudin, C. Identification of a moronecidin-like antimicrobial peptide in the venomous fish Pterois volitans: Functional and structural study of pteroicidin-α. Fish Shellfish Immunol., 2018, 72, 318-324.
[150]
Nsrelden, R.M.; Horiuchi, H.; Furusawa, S. Expression of ayu antimicrobial peptide genes after LPS stimulation. J. Vet. Med. Sci., 2017, 79(6), 1072-1080.
[151]
Komegae, E.N.; Souza, T.A.M.; Grund, L.Z.; Lima, C.; Lopes-Ferreira, M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS One, 2017, 12(2), e0171796.
[152]
Baumann, K.; Casewell, N.R.; Ali, S.A.; Jackson, T.N.W.; Vetter, I.; Dobson, J.S.; Cutmore, S.C.; Nouwens, A.; Lavergne, V.; Fry, B.G. A ray of venom: Combined proteomic and transcriptomic investigation of fish venom composition using barb tissue from the blue-spotted stingray (Neotrygon kuhlii). J. Proteomics, 2014, 109, 188-198.
[153]
Xie, B.; Li, X.; Lin, Z.; Ruan, Z.; Wang, M.; Liu, J.; Tong, T.; Li, J.; Huang, Y.; Wen, B.; Sun, Y.; Shi, Q. Prediction of toxin genes from chinese yellow catfish based on transcriptomic and proteomic sequencing. Int. J. Mol. Sci., 2016, 17(4), 556.
[154]
Ziegman, R.; Alewood, P. Bioactive components in fish venoms. Toxins (Basel), 2015, 7(5), 1497-1531.
[155]
Campos, F.V.; Menezes, T.N.; Malacarne, P.F.; Costa, F.L.S.; Naumann, G.B.; Gomes, H.L.; Figueiredo, S.G. A review on the Scorpaena plumieri fish venom and its bioactive compounds. J. Venom. Anim. Toxins Incl. Trop. Dis., 2016, 22, 35.
[156]
Essack, M.; Bajic, V.B.; Archer, J.A.C. Conotoxins that confer therapeutic possibilities. Mar. Drugs, 2012, 10(6), 1244-1265.
[157]
Rui, Z.; Zhang, W. Engineering biosynthesis of non-ribosomal peptides and polyketides by directed evolution. Curr. Top. Med. Chem., 2016, 16(15), 1755-1762.
[158]
Ansari, M.Z.; Yadav, G.; Gokhale, R.S.; Mohanty, D. NRPS-PKS:
A knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res, 2004, 32 (Web Server issue), W405-W413.