[1]
Chun-Yi, S.; Chao, Q.; Xin-Long, W.; Zhong-Min, S. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv., 2015, 10(1), 89-101.
[2]
Fei, K.; Yu-Peng, Y.; Ling-Guang, Q.; Yu-Hua, Sh.; An-Jian, X.; Jun-Fa, Z.; Xing-You, T.; Li-De, Z. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem., 2011, 21, 3843-3848.
[3]
Martin, H.; Marcus, F. Amino-functionalized basic catalysts with MIL-101 structure. Micropor Mesopor Mater., 2012, 164, 38-43.
[4]
Sunita prem, V.; T.S Sampath, K.; BCP ceramic microspheres as drug delivery carriers: Synthesis, characterisation and doxycycline release. J. Mater. Sci. Mater. Med., 2008, 19(1), 283-290.
[5]
Shanmuganathan, S.; Shanumugasundaram, N.; Adhirajan, N.; Lakshmi, T.S.R.; Mary, B. Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydr. Polym., 2008, 73, 201-211.
[6]
Marilena, P.; Raul-Augustin, M.; Ana-Maria, L.; Cristian, M.; Daniela, B. Mesoporous cerla-silica composites as carriers for doxycycline. U.P.B. Sci. Bull Series B., 2015, 77, 14-24.
[7]
Farrokhzad, H.; Mobedi, H.; Barzin, J.; Poorkhalil, A. Evaluation of polymer concentration effect on doxycycline Hyclate drug release from in situ forming system based on poly(lactide-co-glycolide). Iranian J. Polymer. Sci. Technol, 2010, 22(6), 495-505.
[8]
Jian, L.; Praveen, K.T.; Peter, M.B.; Daryl, R.B.; Jun, L. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev., 2012, 41, 2308-2322.
[9]
Rachel, C.H.; Joseph, D.R.; Wenbin, L. Metal-organic frameworks as potential drug carriers. Current. Opin. Chem. Biol., 2010, 14, 262-268.
[10]
Tomaž, Č.; Emanuela, Ž.; Matjaž, M.; Nataša, Z.L.; Gregor, M. Solid-state NMR study of adsorption of indomethacin molecules in the MIL-53 frame work. Proceedings of the 5th Serbian-Croatian-Slovenian Symposium on Zeolites, , pp. 68-71.
[11]
Shehdeh, J.; Lama, A. The study of fate and mobility of oxytetracycline and doxycycline in soil column matrices. Jordan. J. Chem., 2011, 6(3), 347-360.
[12]
Jiahong, W.; Shourong, Z.; Yun, Sh.; Jingliang, L.; Zhaoyi, X.; Dongqiang, Z. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid Interface Sci., 2010, 349, 293-299.
[13]
Caihong, Z.; Lunhong, A.; Jing, J. Solvothermal synthesis of MIL- 53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J. Mater. Chem. A., 2015, 3, 3074-3081.
[14]
Shakiba, N.; Hossein, F. Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid; for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environ. Toxicol. Pharmacol., 2017, 53, 121-132.
[15]
Ruowen, L.; Fenfen, J.; Lijuan, Sh.; Na, Q.; Ling, W. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J. Hazard. Mater., 2015, 287, 364-372.
[16]
Caihong, Z.; Lunhong, A.; Jing, J. Solvothermal synthesis of MIL- 53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J. Mater. Chem. A ., 2015, 3, 3074-3081.
[17]
Maximiliano, B.; Marcelo, A. Biotemplated synthesis of mesoporous silica for doxycycline removal. Effect of pH, temperature, ionic strength and Ca2+ concentration on the adsorption behavior. Micropor Mesopor Mater., 2016, 225, 534-542.
[18]
Seda, K.; Seda, K. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res., 2011, 50(4), 1799-1812.
[19]
Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J. Hazard. Mater., 2015, 287, 364-372.
[20]
Xu, Z.; Xiaoyan, Y.F.; Min, L.; Chuande, G.; Zhang, Z.H. Synthesis and characterization of Fe3O4@SiO2@poly-l-alanine, peptide brush-magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids Surf. B Biointerfaces, 2010, 81, 503-507.
[21]
Yan, M.; Qing, Z.; Aimin, L.; Chendong, Sh.; Qianqian, Sh.; Mancheng, Z. Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline. J. Hazard. Mater., 2014, 266, 84-93.
[22]
Patricia, H.; Christian, S.; Guillaume, M.; Naseem, A.R.; Francisco, B.; María, V.R.; Muriel, S.; Francis, T.; Gérard, F. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2014, 130(21), 6774-6780.
[23]
Patricia, H.; Tamim, Ch.; Christian, S.; Brigitte, G.; Catherine, S.; Tarek, B.; Jarrod, F.E.; Daniela, H.; Pascal, C.; Christine, K. Porous metal-organic-framework nanoscale carriers as a potential platform for drug. Nat. Mater., 2010, 9, 172-178.
[24]
Patricia, H.; Christian, S.; Mar, V-R.; Muriel, S.; Francis, T.; Gerard, F. Metal-Organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed., 2006, 45, 5974-5978.
[25]
Yi-nan, W.; Meimei, Z.; Shu, L.; Zehua, L.; Jie, L.; Baozhen, W.; Guangtao, L.; Fengting, L.; Xiaohong, G. Magnetic metal-organic frameworks: γ Fe2O3@MOFs via Confined in situ pyrolysis method for drug delivery. Small, 2014, 10(14), 2927-2936.
[26]
Mundargi, R.C.; Srirangarajan, S.; Agnihotri, S.A.; Patil, S.A.; Ravindra, S.; Setty, S.B.; Aminabhavi, T.M. Development and evaluation of novel biodegradable microspheres based on poly(D,L-lactide-co-glycolide) and poly(ε-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: In vitro and in vivo studies. J. Control. Release, 2007, 119(1), 59-68.