Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

New Procaspase Activating Compound (PAC-1) Like Molecules as Potent Antitumoral Agents Against Lung Cancer

Author(s): Leyla Yurttaş*, Ömer Öztürk and Zerrin Cantürk

Volume 16, Issue 6, 2019

Page: [645 - 655] Pages: 11

DOI: 10.2174/1570180815666180926113040

Price: $65

Abstract

Background: In this study, novel ortho-hydroxy N-acyl hydrazone moiety including compounds (3a-l) were designed, based on procaspase activating compound (PAC-1) which is a small molecule known with antitumor activity. The antitumor activity was evaluated on A549 (human lung cancer cell line) and CCD 19Lu (human lung normal cell line).

Methods: Twelve N'-arylidene-2-[4-(methylsulfonyl)piperazin-1-yl]acetohydrazide derivatives (3a-l) were synthesized starting from ethyl 1-piperazinylacetate. All compounds were tested using MTT method and Xcelligence-Real time cell analysis system (RTCA DP) to determine their antitumor activity.

Results: Some physicochemical properties of four active compounds were also predicted using MolSoft, PreADMET and PROTOX software. Four of them, 3h, 3j, 3k and 3l bearing 3-hydroxy, 4-dimethylamino, 2,6-dichloro and 3,4-dichloro substituents in order exhibited selective cytotoxicity.

Conclusion: Eligible values were obtained in the specified ranges as to be an oral/intravenous drug considering the physicochemical calculations.

Keywords: Lung cancer, hydrazone, Procaspase Activating Compound (PAC-1), real-time cell analysis, physicochemical properties, antitumor activity.

Graphical Abstract

[1]
Fan, C.D.; Su, H.; Zhao, J.; Zhao, B.X.; Zhang, S.L.; Miao, J.Y. A novel copper complex of salicylaldehyde pyrazole hydrazone induces apoptosis through up-regulating integrin b4 in H322 lung carcinoma cells. Eur. J. Med. Chem., 2010, 45, 1438-1446.
[2]
Bazin, M-A.; Bodero, L.; Tomasoni, C.; Rousseau, B.; Roussakis, C.; Marchand, P. Synthesis and antiproliferative activity of benzofuran-based analogs of cercosporamide against non-small cell lung cancer cell lines. Eur. J. Med. Chem., 2013, 69, 823-832.
[3]
Mendes, V.I.S.; Bartholomeusz, G.A.; Ayres, M.; Gandhi, V.; Salvador, J.A.R. Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lung cancer cells. Eur. J. Med. Chem., 2016, 123, 317-331.
[4]
Liu, J.; Chen, M.; Wang, Y.; Zhao, X.; Wang, S.; Wu, Y.; Zhang, W. Synthesis and the interaction of 2-(1H-pyrazol-4-yl)-1H-imidazo [4,5-f][1,10]phenanthrolines with telomeric DNA as lung cancer inhibitors. Eur. J. Med. Chem., 2017, 133, 36-49.
[5]
Kadotaa, T.; Yoshioka, Y.; Fujita, Y.; Kuwano, K.; Ochiya, T. Extracellular vesicles in lung cancer-From bench to bedside. Semin. Cell Dev. Biol., 2017, 67, 39-47.
[6]
Janku, F.; Garrido-Laguna, I.; Petruzelka, L.B.; Stewart, D.J.; Kurzrock, R. Novel therapeutic targets in non-small cell lung cancer. J. Thorac. Oncol., 2011, 6, 1601-1612.
[7]
Wang, T.H.; Wang, H.S.; Soong, Y.K. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer, 2000, 88, 2619-2628.
[8]
Chu, E.; DeVita, V. Principles of cancer management: Chemotherapy, in: V. DeVita, S. Hellman, S. Rosenberg (Eds), Cancer: Principles & Practice of Oncology,: Lippincott-Raven, Philadelphia, 2000, pp. 289-306.
[9]
Svingen, P.A.; Loegering, D.; Rodriquez, J.; Meng, X.W.; Mesner, P.W., Jr; Holbeck, S.; Monks, A.; Krajewski, S.; Scudiero, D.A.; Sausville, E.A.; Reed, J.C.; Lazebnik, Y.A.; Kaufmann, S.H. Components of the cell death machine and drug sensitivity of the National Cancer Institute Cell Line Panel. Clin. Cancer Res., 2004, 10, 6807-6820.
[10]
Razi, S.S.; Rehmani, S.; Li, X.; Park, K.; Schwartz, G.S.; Latif, M.J.; Bhora, F.Y. Antitumor activity of paclitaxel is significantly enhanced by a novel proapoptotic agent in nonesmall cell lung cancer. J. Surg. Res., 2015, 194, 622-630.
[11]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, M.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2, 543-550.
[12]
Debernard, K.A.B.; Aziz, G.; Gjesvik, A.T.; Paulsen, R.E. Cell death induced by novel procaspase-3 activators can be reduced by growth factors. Biochem. Biophys. Res. Commun., 2011, 413, 364-369.
[13]
West, D.C.; Qin, Y.; Peterson, Q.P.; Thomas, D.L.; Palchaudhuri, R.; Morrison, K.C.; Lucas, P.W.; Palmer, A.E.; Fan, T.M.; Hergenrother, P.J. Differential effects of procaspase-3 activating compounds in the induction of cancer cell death. Mol. Pharm., 2012, 9, 1425-1434.
[14]
Peterson, Q.P.; Hsu, D.C.; Novotny, C.J.; West, D.C.; Kim, D.; Schmit, J.M.; Dirikolu, L.; Hergenrother, P.J.; Fan, T.M. Discovery and canine preclinical assessment of a nontoxic procaspase-3-activating compound. Cancer Res., 2010, 70, 7232-7241.
[15]
Kovacic, P. Does structural commonality of metal complex Formation by PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) denote mechanistic similarity? Signal transduction and medical aspects. J. Recept. Sig. Transd., 2008, 28, 141-152.
[16]
Botham, R.C.; Fan, T.M.; Im, I.; Borst, L.B.; Dirikolu, L.; Hergenrother, P.J. Dual small-molecule targeting of procaspase-3 dramatically enhances zymogen activation and anticancer activity. J. Am. Chem. Soc., 2014, 136, 1312-1319.
[17]
Matsuo, T.; Yamada, K.; Ishida, M.; Miura, Y.; Yamanaka, M.; Hirota, S. Effect of a procaspase-activating compound on the catalytic activity of mature caspase-3. Bull. Chem. Soc. Jpn., 2015, 88, 1221-1229.
[18]
Seervi, M.; Sobhan, P.K.; Joseph, J.; Ann Mathew, K.; Santhoshkumar, T.R. ERO1a-dependent endoplasmic reticulum–mitochondrial calcium flux contributes to ER stress and mitochondrial permeabilization by procaspase-activating compound-1 (PAC-1). Cell Death Dis., 2013, 4, e968.
[19]
Patel, V.; Balakrishnan, K.; Keating, M.J.; Wierda, W.G.; Gandhi, V. Expression of executioner procaspases and their activation by a procaspase-activating compound in chronic lymphocytic leukemia cells. Blood, 2015, 125, 1126-1136.
[20]
Peterson, Q.P.; Goode, D.R.; West, D.C.; Ramsey, K.N.; Lee, J.J.; Hergenrother, P.J. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J. Mol. Biol., 2009, 388, 144-158.
[21]
Peterson, Q.P.; Hsu, D.C.; Goode, D.R.; Novotny, C.J.; Totten, R.K.; Hergenrother, P.J. Procaspase-3 activation as an anti-cancer strategy: Structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. J. Med. Chem., 2009, 52, 5721-5731.
[22]
Aziz, G.; Akselsen, Ø.W.; Hansen, T.V.; Paulsen, R.E. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons. Toxicol. Appl. Pharmacol., 2010, 247, 238-242.
[23]
Chen, Y.; Sun, M.; Ding, J.; Zhu, Q. SM1, a novel PAC1 derivative, activates procaspase3 and causes cancer cell apoptosis. Cancer Chemother. Pharmacol., 2016, 78, 643-654.
[24]
Lucas, P.W.; Schmit, J.M.; Peterson, Q.P.; West, D.C.; Hsu, D.C.; Novotny, C.J.; Dirikolu, L.; Churchwell, M.I.; Doerge, D.R.; Garrett, L.D.; Hergenrother, P.J.; Fan, T.M. Pharmacokinetics and derivation of an anticancer dosing regimen for PAC-1, a preferential small molecule activator of procaspase-3, in healthy dogs. Invest. New Drugs, 2011, 29, 901-911.
[25]
Roth, H.S.; Botham, R.C.; Schmid, S.C.; Fan, T.M.; Dirikolu, L.; Hergenrother, P.J. Removal of metabolic liabilities enables development of derivatives of procaspase-activating compound 1 (PAC-1) with improved pharmacokinetics. J. Med. Chem., 2015, 58, 4046-4065.
[26]
Wang, F.; Liu, Y.; Wang, L.; Yang, J.; Zhao, Y.; Wang, N.; Cao, Q.; Gong, P.; Wu, C. Targeting procaspase-3 with WF-208, a novel PAC-1 derivative, causes selective cancer cell apoptosis. J. Cell. Mol. Med., 2015, 19, 1916-1928.
[27]
Botham, R.C.; Roth, H.S.; Book, A.P.; Roady, P.J.; Fan, T.M.; Hergenrother, P.J. Small-molecule procaspase3 activation sensitizes cancer to treatment with diverse chemotherapeutics. ACS Cent. Sci., 2016, 2, 545-559.
[28]
Roth, H.S.; Hergenrother, P.J. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and their anticancer activities. Curr. Med. Chem., 2016, 23, 201-241.
[29]
Zamana, S.; Wanga, R.; Gandhi, V. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells. Exp. Hematol., 2015, 43, 951-962.
[30]
Wang, F.; Wang, L.; Zhao, Y.; Li, Y.; Ping, G.; Xiao, S.; Chen, K.; Zhu, W.; Gong, P.; Yang, J.; Wu, C. A novel small-molecule activator of procaspase-3 induces apoptosis in cancer cells and reduces tumor growth in human breast, liver and gallbladder cancer xenografts. Mol. Oncol., 2014, 8, 1640-1652.
[31]
Ma, J.; Zhang, G.; Han, X.; Bao, G.; Wang, L.; Zhai, X.; Gong, P. Synthesis and biological evaluation of benzothiazole derivatives bearing the ortho-hydroxy-N-acylhydrazone moiety as potent antitumor agents. Arch. Pharm. Chem. Life Sci., 2014, 347, 936-949.
[32]
Hsu, D.C.; Roth, H.S.; West, D.C.; Botham, R.C.; Novotny, C.J.; Schmid, S.C.; Hergenrother, P.J. Parallel synthesis and biological evaluation of 837 analogues of procaspase-activating compound 1 (PAC-1). ACS Comb. Sci., 2012, 14, 44-50.
[33]
Sjøli, S.; Solli, A.I.; Akselsen, Ø.; Jiang, Y.; Berg, E.; Hansen, T.V.; Sylte, I.; Winberg, J-O. PAC-1 and isatin derivatives are weak matrix metalloproteinase inhibitors. Biochim. Biophys. Acta, 2014, 184D, 3162-3169.
[34]
Ma, J.; Chen, D.; Lu, K.; Wang, L.; Han, X.; Zhao, Y.; Gong, P. Design, synthesis, and structureeactivity relationships of novel benzothiazole derivatives bearing the ortho-hydroxy Ncarbamoylhydrazone moiety as potent antitumor agents. Eur. J. Med. Chem., 2014, 86, 257-269.
[35]
Luo, H.; Yang, C.; Zhang, X.; Zhao, M.; Jiang, D.; Xiao, J.; Yang, X.; Li, S. Design, synthesis and antitumor activity of a novel series of PAC-1 analogues. Chem. Res. Chin. Univ., 2013, 29, 906-910.
[36]
Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev., 2005, 11, 127-152.
[37]
Mossmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[38]
Bird, C.; Kirstein, S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat. Methods, 2009, 6, v-vi.
[39]
Solly, K.; Wang, X.; Xu, X.; Strulovici, B.; Zheng, W. Application of real-time cell electronic sensing (RT-CES) technology to cellbased assays. Drug Dev. Technol., 2004, 2, 363-372.
[40]
Urcan, E.; Haertel, U.; Styllou, M.; Hickel, R.; Scherthan, H.; Reichla, F.X. Real-time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent. Mater., 2010, 26, 51-58.
[41]
http://molsoft.com/mprop/ Last accessed 20.06.2017.
[42]
https://preadmet.bmdrc.kr/adme/ Last accessed 20.06.2017.
[44]
Moe, B.; Gabos, S.F.; Li, X. Real-time cell-microelectronic sensing of nanoparticle-induced cytotoxic effects. Anal. Chim. Acta, 2013, 789, 83-90.
[45]
Özkay, Y.; Yurttaş, L.; Dikmen, M.; Engür, S. Synthesis and antiproliferative activity evaluation of new thiazole–benzimidazole derivatives using real-time cell analysis (RTCA DP). Med. Chem. Res., 2016, 25, 482-493.
[46]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[47]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35, 495-516.
[48]
Nicholson, D.W. Caspase structure, proteolytic substrates and function during apoptotic death. Cell Death Differ., 1999, 6, 1028-1042.

© 2025 Bentham Science Publishers | Privacy Policy