[1]
Dai, G.; Pohlenz, F.; Xu, M.; Koenders, L.; Danzebrink, H.U.; Wilkening, G. Accurate and traceable measurement of nano- and microstructures. Meas. Sci. Technol., 2006, 17, 545-552.
[2]
Pfeiffer, H.C.; Langner, G.O. Advanced deflection concept for large area, high resolution e-beam lithography. J. Vac. Sci. Technol., 1981, 19, 1058-1063.
[3]
Preist, T.W.; Cotter, N.P.K.; Sambles, J.R. Periodic multilayer gratings of arbitrary shape. J. Opt. Soc. Am. A, 1995, 12, 1740-1748.
[4]
McClelland, J.J.; Scholten, R.E.; Palm, E.C.; Celotta, R.J. Laser-focused atomic deposition. Science, 1993, 262, 877-880.
[5]
Lei, L.; Li, Y.; Deng, X.; Fan, G.; Cai, X.; Cheng, X.; Weng, J.; Liu, G.; Li, T. Laser-focused Cr atomic deposition pitch standard as a reference standard. Sens. Actuators A Phys., 2015, 222, 184-193.
[6]
Anderson, W.R.; Bradley, C.C.; Mcclelland, J.J.; Celotta, R.J. Minimizing feature width in atom optically fabricated chromium nanostructures. Phys. Rev. A, 2010, 59, 2476-2485.
[7]
McGowan, R.W.; Giltner, D.M.; Lee, S.A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms. Opt. Lett., 1995, 20, 2535-2537.
[8]
te Sligte, E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; van der Straten, P.; Beijerinck, H.C.W.; van Leeuwen, K.A.H. Atom lithography of Fe. Appl. Phys. Lett., 2004, 85, 4493-4495.
[9]
Lison, F.; Haubrich, D.; Meschede, D. Nanoscale atomic lithography with a cesium atomic beam. Appl. Phys. B, 1997, 65, 419-421.
[10]
Ohmukai, R.; Urabe, S.; Watanabe, M. Atom lithography with ytterbium beam. Appl. Phys. B, 2003, 77, 415-419.
[11]
Gupta, R.; Mcclelland, J.J.; Celotta, R.J.; Marte, P. Raman-induced avoided crossings in adiabatic optical potentials: Observation of λ/8 spatial frequency in the distribution of atoms. Phys. Rev. Lett., 1996, 129, 4689-4692.
[12]
He, X.; Yu, S.; Xu, P.; Wang, J.; Zhan, M. Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom. Opt. Express, 2012, 20, 3711-3724.
[13]
Oberthaler, M.K.; Pfau, T. One-, two- and three-dimensional nanostructures with atom lithography. J. Phys. Condens. Matter, 2003, 15, R233-R255.
[14]
Jurdik, E.; Rasing, T.; van Kempen, H.; Bradley, C.C.; McClelland, J.J. Surface growth in laser-focused atomic deposition. Phys. Rev. B, 1999, 60, 1543-1546.
[15]
Schulze, T.; Brezger, B.; Schmidt, P.O.; Mertens, R.; Bell, A.S.; Pfau, T.; Mlynek, J. Sub-100 nm structures by neutral atom lithography. Microelectron. Eng., 1999, 46, 105-108.
[16]
Wang, J.; Qian, J.; Yin, C.; Shi, C.; Lei, M. Method of identifying the relative position between standing wave of laser light and substrate in atom lithography. Acta Phys. Sin., 2012, 61190601
[17]
Smeets, B.; van der Straten, P.; Meijer, T.; Fabrie, C.; van Leeuwen, K.A.H. Atom lithography without laser cooling. Appl. Phys. B, 2010, 98, 697-705.
[18]
Zhang, W.
The Research of Laser Collimation and Deposition of Chromium Atomic Beam., PhD Thesis, Tongji University: Shanghai,
March. 2008.
[19]
McClelland, J.J.; Anderson, W.R.; Bradley, C.C.; Walkiewicz, M.; Celotta, R.J.; Jurdik, E.; Deslattes, R.D. Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition. J. Res. Natl. Inst. Stand. Technol., 2003, 108, 99-113.
[20]
Tortonese, M.; Guan, Y.; Prochazka, J. NIST-traceable calibration of CD-SEM magnification using a 100-nm pitch standard. Proc. SPIE, 2003, 5038, 711-718.
[21]
Lei, L.; Li, Y.; Fan, G.; Li, T. The measurement of nano dimension standard by laser focus sensor. Sens. Actuators A Phys., 2013, 203, 430-433.
[22]
Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Erratum: Photonic crystals: putting a new twist on light. Nature, 1997, 386, 143-149.
[23]
Kane, B.E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393, 133-137.