[1]
Tavassoli, A. Targeting the protein-protein interactions of the HIV life cycle. Chem. Soc. Rev., 2011, 40, 1337-1346.
[2]
Zhan, P.; Pannecouque, C.; De Clercq, E.; Liu, X. Anti-HIV drug discovery and development: Current innovations and future trends. J. Med. Chem., 2016, 59, 2849-2878.
[3]
Moore, J.P.; Stevenson, M. New targets for inhibitors of HIV-1 replication. Nat. Rev. Mol. Cell Biol., 2000, 1, 40-49.
[4]
Teixeira, C.; Gomes, J.R.; Gomes, P.; Maurel, F.; Barbault, F. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur. J. Med. Chem., 2011, 46, 979-992.
[5]
Vermeire, K.; Schols, D. Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin. Investig. Drugs, 2005, 14, 1199-1212.
[6]
Deftereos, S.; Giannopoulos, G.; Panagopoulou, V.; Bouras, G.; Raisakis, K.; Kossyvakis, C.; Karageorgiou, S.; Papadimitriou, C.; Vastaki, M.; Kaoukis, A.; Angelidis, C.; Pagoni, S.; Pyrgakis, V.; Alexopoulos, D.; Manolis, A.S.; Stefanadis, C.; Cleman, M.W. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail., 2014, 2, 131-137.
[7]
Gasparyan, A.Y.; Ayvazyan, L.; Yessirkepov, M.; Kitas, G.D. Colchicine as an anti-inflammatory and cardioprotective agent. Expert Opin. Drug Metab. Toxicol., 2015, 11, 1781-1794.
[8]
Lin, Z.Y.; Wu, C.C.; Chuang, Y.H.; Chuang, W.L. Anti-cancer mechanisms of clinically acceptable colchicine concentrations on hepatocellular carcinoma. Life Sci., 2013, 93, 323-328.
[9]
Singh, B.; Kumar, A.; Joshi, P.; Guru, S.K.; Kumar, S.; Wani, Z.A.; Mahajan, G.; Hussain, A.; Qazi, A.K.; Kumar, A.; Bharate, S.S.; Gupta, B.D.; Sharma, P.R.; Hamid, A.; Saxena, A.K.; Mondhe, D.M.; Bhushan, S.; Bharate, S.B.; Vishwakarma, R.A. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem., 2015, 13, 5674-5689.
[10]
Huczyński, A.; Rutkowski, J.; Popiel, K.; Maj, E.; Wietrzyk, J.; Stefańska, J.; Majcher, U.; Bartl, F. Synthesis, antiproliferative and antibacterial evaluation of C-ring modified colchicine analogues. Eur. J. Med. Chem., 2015, 90, 296-301.
[11]
Schlesinger, N. Reassessing the safety of intravenous and compounded injectable colchicine in acute gout treatment. Expert Opin. Drug Saf., 2007, 6, 625-629.
[12]
Cifuentes, M.; Schilling, B.; Ravindra, R.; Winter, J.; Janik, M.E. Synthesis and biological evaluation of B-ring modified colchicine and isocolchicine analogs. Bioorg. Med. Chem. Lett., 2006, 16, 2761-2764.
[13]
Shen, L.H.; Li, H.Y.; Shang, H.X.; Tian, S.T.; Lai, Y.S.; Liu, L.J. Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties. Chin. J. Chem., 2013, 24, 299-302.
[14]
Thomopoulou, P.; Sachs, J.; Teusch, N.; Mariappan, A.; Gopalakrishnan, J.; Schmalz, H.G. New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med. Chem. Lett., 2015, 7, 188-191.
[15]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[16]
Tatematsu, H.; Kilkuskie, R.E.; Corrigan, A.J.; Bodner, A.J.; Lee, K.H. Anti-AIDS agents, 3. inhibitory effects of colchicine derivatives on HIV replication in H9 lymphocyte cells. J. Nat. Prod., 1991, 54, 632-637.
[17]
Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Advances in computational methods to predict the biological activity of compounds. Exp Opin. Drug Discov., 2010, 5, 633-654.
[18]
Nantasenamat, C.; Prachayasittikul, V. Maximizing computational tools for successful drug discovery. Expert Opin. Drug Discov., 2015, 10, 321-329.
[19]
Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15, 1780-1800.
[20]
Dennington, II, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W.L.; Gilliland, R. GaussView, Version 3.09; Semichem: Shawnee Mission, KS, USA, 2003.
[21]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision A.1, Connecticut, Wallingford, , 2009.
[22]
Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev., 1996, 96, 1027-1044.
[23]
Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys., 1978, 68, 3801-3807.
[24]
Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[25]
Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[26]
Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, B. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett., 2000, 323, 59-70.
[27]
Talete srl. DRAGON for windows (Software for molecular descriptor calculations), Version 5.5, Milano, Italy 2007.
[28]
Witten, I.H.; Frank, E.; Hall, M.A. Data mining: Practical machine learning tools and techniques; Morgan Kaufmann: San Francisco, USA, 2011.
[29]
Worachartcheewan, A.; Nantasenamat, C.; Isarankura-Na-Ayudha, C.; Prachayasittikul, V. QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum. Chem. Pap., 2013, 67, 1462-1473.
[30]
Pingaew, R.; Prachayasittikul, V.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Novel 1,4-naphthoquinone-based sulfonamides: synthesis, QSAR, anticancer and antimalarial studies. Eur. J. Med. Chem., 2015, 103, 446-459.
[31]
Nantasenamat, C.; Naenna, T.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J. Comput. Aided Mol. Des., 2005, 19, 509-524.
[32]
Su, Q.; Xu, X.; Zhou, L. QSAR model of triterpene derivatives as potent anti-HIV agents. Mol. Simul., 2008, 34, 651-659.
[33]
Cortes, C.; Vapnik, V. Support-vector network. Mach. Learn., 1995, 20, 273-297.
[34]
Vapnik, V. Statistical learning theory; Wiley: New York, USA, 1998.
[35]
Nantasenamat, C.; Worachartcheewan, A.; Jamsak, S.; Preeyanon, L.; Shoombuatong, W.; Simeon, S.; Mandi, P.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. AutoWeka: Toward an automated data mining software for QSAR and QSPR studies. Methods Mol. Biol., 2015, 1260, 119-147.
[36]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[37]
Lan, P.; Chen, W.N.; Huang, Z.J.; Sun, P.H.; Chen, W.M. Understanding the structure-activity relationship of betulinic acid derivatives as anti-HIV-1 agents by using 3D-QSAR and docking. J. Mol. Model., 2011, 17, 1643-1659.
[38]
Chen, Y.F.; Hsu, K.C.; Lin, S.R.; Wang, W.C.; Huang, Y.C.; Yang, J.M. SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties. Nucleic Acids Res., 2010, 38, W424-430.
[39]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment, Release 2017; San Diego: Dassault Systèmes, 2016.
[40]
Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Tansila, N.; Naenna, T.; Prachayasittikul, V. Prediction of GFP spectral properties using artificial neural network. J. Comput. Chem., 2007, 28, 1275-1289.
[41]
Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4, 571.
[42]
Srungboonmee, K.; Songtawee, N.; Monnor, T.; Prachayasittikul, V.; Nantasenamat, C. Probing the origins of 17β-hydroxysteroid dehydrogenase type 1 inhibitory activity via QSAR and molecular docking. Eur. J. Med. Chem., 2015, 96, 231-237.
[43]
Worachartcheewan, A.; Suvannang, N.; Prachayasittikul, S.; Prachayasittikul, V.; Nantasenamat, C. Probing the origins of aromatase inhibitory activity of disubstituted coumarins via QSAR and molecular docking. EXCLI J., 2014, 13, 1259-1274.
[44]
Worachartcheewan, A.; Nantasenamat, C.; Owasirikul, W.; Monnor, T.; Naruepantawart, O.; Janyapaisarn, S.; Prachayasittikul, S.; Prachayasittikul, V. Insights into antioxidant activity of 1-adamantylthiopyridine analogs using multiple linear regression. Eur. J. Med. Chem., 2014, 73, 258-264.
[45]
Shoombuatong, W.; Prachayasittikul, V.; Anuwongcharoen, N.; Songtawee, N.; Monnor, T.; Prachayasittikul, S.; Prachayasittikul, V.; Nantasenamat, C. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors. Drug Des. Devel. Ther., 2015, 9, 4515-4549.
[46]
Worachartcheewan, A.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Predicting antimicrobial activities of benzimidazole derivatives. Med. Chem. Res., 2013, 22, 5418-5430.
[47]
Mandi, P.; Shoombuatong, W.; Phanus-umporn, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V.; Bülow, L.; Nantasenamat, C. Exploring the origins of structure–oxygen affinity relationship of human haemoglobin allosteric effector. Mol. Simul., 2015, 41, 1283-129.
[48]
Worachartcheewan, A.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Probing the origins of anticancer activity of chrysin derivatives. Med. Chem. Res., 2015, 24, 1884-1892.
[49]
Lapins, M.; Worachartcheewan, A.; Spjuth, O.; Georgiev, V.; Prachayasittikul, V.; Nantasenamat, C.; Wikberg, J.E. A unified proteochemometric model for prediction of inhibition of cytochrome P450 isoforms. PLoS One, 2013, 8, e66566.
[50]
Saghaie, L.; Sakhi, H.; Sabzyan, H.; Shahlaei, M.; Shamshirian, D. Stepwise MLR and PCR QSAR study of the pharmaceutical activities of antimalarial 3-hydroxypyridinone agents using B3LYP/6-311++G** descriptors. Med. Chem. Res., 2013, 22, 1679-1688.
[51]
Bucinski, A.; Markuszewski, M.J.; Wiktorowicz, W.; Krysinski, J.; Kaliszan, R. Artificial neural networks for prediction of antibacterial activity in series of imidazole derivatives. Comb. Chem. High Throughput Screen., 2004, 7, 327-336.
[52]
Verma, R.P.; Hansch, C. QSAR modeling of taxane analogues against colon cancer. Eur. J. Med. Chem., 2010, 45, 1470-1477.
[53]
Worachartcheewan, A.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, S.; Prachayasittikul, V. Predicting the free radical scavenging activity of curcumin derivatives. Chemometr. Intell. Lab. Syst., 2011, 109, 207-216.
[54]
Sawant, R.L.; Bansode, C.A.; Wadekar, J.B. (2013). In vitro anti-inflammatory potential and QSAR analysis of oxazolo/thiazolo pyrimidine derivatives. Med. Chem. Res., 2013, 22, 1884-1892.
[55]
Kwon, Y.D.; LaLonde, J.M.; Yang, Y.; Elban, M.A.; Sugawara, A.; Courter, J.R.; Jones, D.M.; Smith, A.B.; Debnath, A.K.; Kwong, P.D. Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS One, 2014, 9, e85940.
[56]
Madani, N.; Schon, A.; Princiotto, A.M.; Lalonde, J.M.; Courter, J.R.; Soeta, T.; Ng, D.; Wang, L.; Brower, E.T.; Xiang, S.H.; Kwon, Y.D.; Huang, C.C.; Wyatt, R.; Kwong, P.D.; Freire, E.; Smith, III, A.B.; Sodroski, J. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure, 2008, 16, 1689-1701.