[1]
van Pee, K.H.; Unversucht, S. Biological dehalogenation and halogenation reactions. Chemosphere, 2003, 52(2), 299-312.
[2]
Nam, S.J.; Gaudncio, S.P.; Kauffman, C.A.; Jensen, P.R.; Kondratyuk, T.P.; Marler, L.E.; Pezzuto, J.M. Fenical. W. Fijiolides A and B, inhibitors of TNF-α-induced NFκB activation, from a marine-derived sediment bacterium of the genus Nocardiopsis. J. Nat. Prod., 2010, 73(6), 1080-1086.
[3]
Gutirrez-Cepeda, A.; Fernndez, J.J.; Gil, L.V.; Lopez-Rodriguez, M. Norte. M.; Souto, M.L. Nonterpenoid C15 acetogenins from Laurencia marilzae. J. Nat. Prod., 2011, 74(3), 441-448.
[4]
Lhullier, C.; Falkenberg, M.; Ioannou, E.; Quesada, A.; Papazafiri, P.; Horta, P.A.; Schenkel, E.P.; Vagias, C.; Roussis, V. Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. J. Nat. Prod., 2010, 73(1), 27-32.
[5]
Han, B.; McPhail, K.L.; Gross, H.; Goeger, D.E.; Mooberry, S.L.; Gerwick, W.H. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron, 2005, 61(49), 11723-11729.
[6]
Zidorn, C.; Ellmerer, E.P.; Konwalinka, G.; Schwaiger, N.; Stuppne, H. 13-Chloro-3-O-β-D-glucopyranosylsolstitialin from Leontodon palisae: the first genuine chlorinated sesquiterpene lactone glucoside. Tetrahedron Lett., 2004, 45(17), 3433-3436.
[7]
Yin, S.; Boyle, G.M.; Carroll, A.R.; Kotiw, M.; Dearnaley, J.; Quinn, R.J.; Davis, R.A. Caelestines A−D, Brominated quinolinecarboxylic acids from the Australian ascidian Aplidium caelestis. J. Nat. Prod., 2010, 73(9), 1586-1589.
[8]
Zhang, L.; An, R.; Wang, J.; Sun, N.; Zhang, S.; Hu, J.; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microbiol., 2005, 8(3), 276-281.
[9]
Fehr, D.; Barlow, R.; McAtee, J.; Hemscheidt, T.K. Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J. Nat. Prod., 2010, 73(11), 1963-1966.
[10]
Yang, X.; Davis, R.A.; Buchanan, M.S.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod., 2010, 73(5), 985-987.
[11]
Vairappan, C.S.; Suzuki, M.; Ishii, T.; Okino, T.; Abe, T.; Masuda, M. Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochem, 2008, 69(13), 2490-2494.
[12]
Ji, N.Y.; Li, X.M.; Wang, B.G. Sesquiterpenes and other metabolites from the marine red alga Laurencia composita (Rhodomelaceae). Helv. Chim. Acta, 2010, 93, 2281-2286.
[13]
Kladi, M.; Vagias, C.; Papazafiri, P.; Furnari, G.; Serio, D.; Roussis, V. New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron, 2007, 63(32), 7606-7611.
[14]
Su, H.; Shi, D.Y.; Li, J.; Guo, S.J.; Li, L.L.; Yuan, Z.H.; Zhu, X.B. Sesquiterpenes from Laurencia similes. Molecules, 2009, 14, 1889-1897.
[15]
Levenfors, J.J.; Hedman, R.; Thaning, C.; Gerhardson, B.; Welch, C.J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem., 2004, 36(4), 677-685.
[16]
Thaning, C.; Welch, C.J.; Borowicz, J.J.; Hedman, R.; Gerhardson, B. Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol. Biochem., 2001, 33(12-13), 1817-1826.
[17]
Rudi, A.; Benayahu, Y.; Kashman, Y. Negombins A-I, new chlorinated polyfunctional diterpenoids from the marine sponge Negombata species. Org. Lett., 2007, 9(12), 2337-2340.
[18]
Sung, P.J.; Chiang, M.Y.; Tsai, W.T.; Su, J.H.; Su, Y.M.; Wu, Y.C. Chlorinated briarane-type diterpenoids from the gorgonian coral Ellisella robusta (Ellisellidae). Tetrahedron, 2007, 63(52), 12860-12865.
[19]
Gan, L.S.; Zheng, Y.L.; Mo, J.X.; Liu, X.; Li, X.H.; Zhou, C.X. Sesquiterpene lactones from the root tubers of Lindera aggregata. J. Nat. Prod., 2009, 72(8), 1497-1501.
[20]
Chen, J.J.; Li, W.X.; Gao, K.; Jin, X.J.; Yao, X.J. Absolute structures of monoterpenoids with a δ-lactone-containing skeleton from Ligularia hodgsonii. J. Nat. Prod., 2012, 75(6), 1184-1188.
[21]
Mahmoud, A.A.; Ahmed, A.A.; El , Bassuony. A.A. A new chlorosesquiterpene lactone from Ambrosia maritima. Fitoterapia, 1999, 70(6), 575-578.
[22]
Abe, H.; Fukazawa, N.; Kobayashi, T.; Ito, H. Indium chloride mediated chlorolactonization: construction of chlorinated lactone fragments. Tetrahedron, 2013, 69, 2519-2523.
[23]
Campbell, M.L.; Rackley, S.A.; Giambalvo, L.N.; Whitehead, D.C. Bromolactonization of alkenoic acids mediated by V2O5via bromide to bromenium in situ oxidation. Tetrahedron Lett., 2014, 55(41), 5680-5682.
[24]
Campbell, M.L.; Rackley, S.A.; Giambalvo, L.N.; Whitehead, D.C. Vanadium (V) oxide mediated bromolactonization of alkenoic acids. Tetrahedron, 2015, 71, 3895-3902.
[25]
Chen, F.; Jiang, X.; Er, J.C.; Yeung, Y.Y. Molecular sieves as an efficient and recyclable catalyst for bromolactonization and bromoacetoxylation reactions. Tetrahedron Lett., 2010, 51(26), 3433-3435.
[26]
Shelli, R. Mellegaard, Jon A. Tunge, Selenium-Catalyzed Halolactonization: Nucleophilic Activation of Electrophilic Halogenating Reagents. J. Org. Chem., 2004, 69(25), 8979-8981.
[27]
Whitehead, D.C.; Yousefi, R.; Jaganathan, A.; Borhan, B. An Organocatalytic asymmetric chlorolactonization. J. Am. Chem. Soc., 2010, 132(10), 3298-3300.
[28]
Yousefi, R.; Whitehead, D.C.; Mueller, J.M.; Staples, R.J.; Borhan, B. On the chlorenium source in the asymmetric chlorolactonization reaction. Org. Lett., 2011, 13(4), 608-611.
[29]
Han, X.; Dong, C.; Zhou, H.B. C3-Symmetric cinchonine-squaramide-catalyzed asymmetric chlorolactonization of styrene-type carboxylic acids with 1,3-dichloro-5,5-dimethylhydantoin: An efficient method to chiral isochroman-1-ones. Adv. Synth. Catal., 2014, 356(6), 1275-1280.
[30]
Lee, H.J.; Kim, D.Y. Catalytic enantioselective bromolactonization of alkenoic acids in the presence of palladium complexes. Tetrahedron Lett., 2012, 53(51), 6984-6986.
[31]
Alvarado-Beltran, I.; Maerten, E.; Toscano, R.A.; Lopez-Cortes, J.G.; Baceiredo, A.; Alvarez-Toledano, C. Enantioselective synthesis of 4-alkenoic acids via Pd-catalyzed allylic alkylation: stereocontrolled construction of c and d-lactones. Tetrahedron Asymm, 2015, 26(15-16), 802-809.
[32]
Filippova, L.; Stenstrom, Y.; Hansen, T.V. An asymmetric iodolactonization reaction catalyzed by a zinc bis-proline-phenol complex. Tetrahedron Lett., 2014, 55(2), 419-422.
[33]
Banoth, S.; Kanikarapu, S.; Yadav, J.S.; Mohapatra, D.K. Stereoselective synthesis of (+)-decarestrictine L using tandem isomerization followed by C–O and C–C bond formation reaction. Tetrahedron Lett., 2016, 57(39), 4368-4370.
[34]
Cordova, R.; Snider, B.S. A synthetic approach to actinobolin. Total synthesis of (±)-ramulosin. Tetrahedron Lett., 1984, 25(28), 2945-2948.
[35]
Still, C.; Schneider, M.J. A convergent route to. alpha-substituted acrylic esters and application to the total synthesis of (±)-frullanolide. J. Am. Chem. Soc., 1977, 99(3), 948-950.
[36]
Kuroda, C.; Tang, C.Y.; Tanabe, M.; Funakoshi, M. Proto- and iodo-lactonization reaction of substituted α,β: γ,δ-unsaturated carboxylic acid. Bull. Chem. Soc. Jpn., 1999, 72(2), 1583-1587.
[37]
Kato, T.; Ishimatu, T.; Aikawa, A.; Taniguchi, K.; Kurakashi, T.; Nakai, T. Preparation of the enantiomers of 19-epoxy docosahexaenoic acids and their 4-hydroxy derivatives. Tetrahedron. Assym, 2000, 11, 851-860.
[38]
Mohapatra, D.K.; Banoth, S.; Yadav, J.S. Stereoselective synthesis of the C21–C29 fragment of (+)-Sorangicin A employing iodocyclization reactions. Tetrahedron Lett., 2015, 56(43), 5930-5932.
[39]
Han, X.; Wu, H.; Dong, C.; Tien, P.; Xie, W.; Wu, S.; Zhou, H.B. Halolactones are potent HIV-1 non-nucleoside reverse transcriptase inhibitors. RSC Advances, 2015, 5, 10005-10013.
[40]
Majik, M.S.; Parvatkar, P.T. Next generation biofilm inhibitors for Pseudomonas aeruginosa: Synthesis and rational design approaches. Curr. Top. Med. Chem., 2014, 14(1), 81-109.
[41]
Zlokazov, M.V.; Veselovsky, V.V. New synthesis of serricornin, the sex pheromone of the cigarette beetle (Lasioderma serricorne). Russ. Chem. Bull. Int. Ed, 2002, 51(8), 1600-1603.
[42]
Hauske, J.R.; Julin, S.M. Synthesis of non-peptide scaffolding domains via a totally stereoselective iodolactonization protocol. Tetrahedron Lett., 1993, 34(31), 4909-4912.
[43]
Qureshi, Z.; Weinstabl, H.; Suhartono, M.; Liu, H.; Thesmar, P.; Lautens, M. Application of the palladium-catalysed norbornene-assisted Catellani reaction towards the total synthesis of (+)-linoxepin and isolinoxepin. Eur. J. Org. Chem., 2014, 2014(19), 4053-4069.
[44]
Mostinski, Y.; Valerio, V.; Lankri, D.; Tsvelikhovsky, D. Synthesis of tricyclic spiranoid lactones via I2/Sm(II)- and I2/Pd(0)-mediated cyclizations of a common cycloalkylmethylene precursor. J. Org. Chem., 2015, 80(21), 10464-10473.
[45]
Davies, S.G.; Fletcher, A.M.; Lee, J.A.; Roberts, P.M.; Russell, A.J.; Taylor, R.J.; Thomson, A.D.; Thomson, J.E. Polysubstituted piperidines via iodolactonization: application to the asymmetric synthesis of (+)-pseudodistomin D. Org. Lett., 2012, 14(7), 1672-1675.
[46]
Dembitsky, V.M.; Tolstikov, A.G.; Tolstikov, G.A. Natural halogenated diterpenoids. Chem. Sustainable Dev, 2002, 10, 253-264.
[47]
Hamza, F.; Kumar, A.R.; Zinjarde, S. Biotechnological applications of quorum-sensing inhibitors in aquacultures. In: Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight; Kalia, V., Ed.; Springer: New Delhi, 2015.
[48]
Díaz-Marrero, A.R.; Brito, I.; de la Rosa, J.M.; D’Croz, L.; Fabelo, O.; Ruiz-Pérez, C.; Darias, J.; Cueto, M. Novel lactone chamigrene-derived metabolites from Laurencia majuscula. Eur. J. Org. Chem., 2009, 1407-1411.
[49]
Zhang, L.; An, R.; Wang, J.; Sun, N.; Zhang, S.; Hu, J.; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microb., 2005, 8(3), 276-281.
[50]
Gan, L.S.; Zheng, Y.L.; Mo, J.X.; Liu, X.; Li, X.H.; Zhou, C.X. Sesquiterpene lactones from the root tubers of Lindera agregata. J. Nat. Prod., 2009, 72(8), 1497-1501.
[51]
Chen, J.J.; Li, W.X.; Gao, K.; Jin, X.J.; Yao, X.J. Absolute structures of monoterpenoids with a δ-lactone-containing skeleton from Ligularia hodgsonii. J. Nat. Prod., 2012, 75(6), 1184-1188.
[52]
Zidorn, C.; Ellmerer, E.P.; Konwalinka, G.; Schwaiger, N.; Stuppner, H. 13-Chloro-3-O-β-d-glucopyranosylsolstitialin from Leontodon palisae: the first genuine chlorinated sesquiterpene lactone glucoside. Tetrahedron Lett., 2004, 45(17), 3433-3436.
[53]
Faber, K. Biotransformations in Organic Chemistry: A Textbook, 7th ed; Springer, 2017, pp. 251-253.
[54]
Neumann, C.S.; Fujimori, D.G.; Walsh, C.T. Halogenation strategies in natural product biosynthesis. Chem. Biol., 2008, 15(2), 99-109.
[55]
Timmins, A.; de Visser, S.P. Enzymatic halogenases and haloperoxidases: Computational studies on mechanism and function. Adv. Protein Chem. Struct. Biol., 2015, 100, 113-151.
[56]
Zhu, M.; Li, L.; Tong, J.Y.; Zhang, H. An effective method for the preparation of chlorolactones. Chin. Chem. Lett., 2011, 22(4), 431-434.
[57]
Lopez-Lopez, J.A.; Guerra, F.M.; Moreno-Dorado, F.J.; Jorge, Z.D.; Massanet, G.M. Synthesis of chlorinated β- and γ-lactones from unsaturated acids with sodium hypochlorite and Lewis acids. Tetrahedron Lett., 2007, 48(10), 1749-1752.
[58]
Genovese, S.; Epifano, F.; Pelucchini, C.; Procopio, A.; Curini, M. Ytterbium triflate catalyzed synthesis of chlorinated lactones. Tetrahedron Lett., 2010, 51(46), 5992-5995.
[59]
Grabarczyk, M.; Białońska, A. Biotransformations of chloro-, bromo- and iodolactone with trimethylcyclohexane system using fungal strains. Biocatal. Biotransform., 2010, 28(5-6), 408-414.
[60]
Grabarczyk, M.; Mączka, W.; Wińska, K.; Żarowska, B.; Anioł, M. The new halolactones and hydroxylactone with trimethylcyclohexene ring obtained through combined chemical and microbial processes. J. Mol. Catal., B Enzym., 2014, 102, 195-203.
[61]
Tanase, C.I.; Draghici, C.; Shova, S.; Cojocaru, A.; Maganu, M.; Munteanu, C.V.A.; Cocu, F. Regioselective reactions on a 1,3-disubstituted dihydroxymethyl or dicarboxyl hexahydropentalene skeleton. Tetrahedron, 2015, 71, 6852-6859.
[62]
Gładkowski, W.; Skrobiszewski, A.; Mazur, M.; Siepka, M.; Pawlak, A.; Obmińska-Mrukowicz, B.; Białońska, A.; Poradowski, D.; Drynda, A.; Urbaniak, M. Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes. Tetrahedron, 2013, 69, 10414-10423.
[63]
Griffin, J.D.; Cavanaugh, C.L.; Nicewicz, D.A. Reversing the regioselectivity of halofunctionalization reactions through cooperative photoredox and copper catalysis. Angew. Chem., 2017, 129, 2129-2132.
[64]
Ma, S.; Wu, S. CuBr2-mediated direct aqueous bromolactonization of 2,3-allenoates. An efficient access to β-bromobutenolides. Tetrahedron Lett., 2001, 42(24), 4075-4077.
[65]
Bourgeois, M.J.; Campagnole, M.; Montaudon, E. A highly diastereoselective synthesis of trans-para-menthanic epoxyesters. Synthesis, 2001, 12, 1883-1887.
[66]
Arnold, R.T.; de Moura Campos, M.; Lindsay, K.L. Participation of a neighboring carboxyl group in addition reactions. I. The mechanism of the reaction of bromine with γ,δ-unsaturated acids and esters. J. Am. Chem. Soc., 1953, 75(5), 1044-1047.
[67]
Gelat, F.; Coffinet, M.; Lebrun, S.; Agbossou-Niedercorn, F.; Michon, C.; Deniau, E. Regioselective organocatalyzed asymmetric bromolactonization of aryl acrylate-type carboxylic acids: a new approach towards enantioenriched 3-substituted isobenzofuranones. Tetrahedron Asymm, 2016, 27(19), 980-989.
[68]
Grotowska, A.K.; Wawrzeńczyk, C. Lactones 13. Biotransformation of iodolactones. J. Mol. Catal., B Enzymatic., 2002, 19-20, 203-208.
[69]
Paruch, E.; Ciunik, Z.; Nawrot, J.; Wawrzeńczyk, C. Lactones. 9. Synthesis of terpenoid lactones active insect antifeedants. J. Agric. Food Chem., 2000, 48(10), 4973-4977.
[70]
Grabarczyk, M.; Szumny, A.; Gładkowski, W.; Białońska, A.; Ciunik, Z.; Wawrzeńczyk, C. Lactones 18. Synthesis of bicyclic lactones with methyl-, di- and trimethyl substituted cyclohexane system. Polish . J. Chem., 2005, 79(11), 1763-1771.
[71]
Marino, J.P.; Floyd, D.M. Generation and reactivity of α-carbethoxyvinylcuprate. J. Am. Chem. Soc., 1974, 96(2), 7138-7140.
[72]
Chavan, S.P.; Sharma, A.K. Iodolactonization and iodoetherification of β,γ-unsaturated acids and alcohols using FeCl3 and NaI. Tetrahedron Lett., 2001, 42(29), 4923-4924.
[73]
Kristianslund, R.; Aursnes, M.; Tungen, J.E.; Hansen, T.V. Squaramide catalyzed enantioselective iodolactonization of allenoic acids. Tetrahedron Lett., 2016, 57(47), 5232-5236.